Matrix Representation: Change of Basis
Let \(\alpha: \mathcal{P}_2(\mathbb{R}) \longrightarrow M_{2\times 2}(\mathbb{R})\) be defined by
\(\alpha(f(x))=\left(\begin{array}{cc}f^{'}(0)& 2f(1)\\0& f^{''}(3)\end{array}\right)\)
First, let’s show that \(\alpha\) is a linear transformation. Let \(f(x),g(x) \in \mathcal{P}_2(\mathbb{R})\) and \(a,b\in \mathbb{R}\). Then by definition, we have
\(\alpha(af(x)+bg(x))=\left(\begin{array}{cc}af'(0)+bg'(0)& 2af(1)+2bg(1)\\0& af''(3)+bg''(3)\end{array}\right)\)
\(\hspace{1.6in}\)=\(\left(\begin{array}{cc}af'(0)& 2af(1)\\0& af''(3)\end{array}\right)\)+\(\left(\begin{array}{cc}bg'(0)& 2bg(1)\\0& bg''(3)\end{array}\right)\)
\(\hspace{1.6in}\)=\(a\left(\begin{array}{cc}f'(0)& 2f(1)\\0& f''(3)\end{array}\right)\)+\(b\left(\begin{array}{cc}g'(0)& 2g(1)\\0& g''(3)\end{array}\right)\)
\(\hspace{1.6in}=a\alpha(f(x))+b\alpha(g(x))\)
So that \(\alpha\) is a linear transformation.
Second, we find the kernel space \(ker(\alpha)\), then use the Dimension Theorem (formula) to decide the rank of \(\alpha\)
The kernel of \(\alpha\) is defined as
\(ker(\alpha)=\{v\in V|\alpha(v)=0_{M_{2\times2}(\mathbb{R})}\}\)
\(\alpha(f(x))=\left(\begin{array}{cc}f^{'}(0)& 2f(1)\\0& f^{''}(3)\end{array}\right)=[0]\)
\(\implies f'(0)=0, 2f(1)=0, f''(3)=0\)
If \(f(x)=a+bx+cx^2\) then we have,
\(\begin{array}{c}f'(0)\implies b=0\\2f(1)=0\implies 2(a+b+c)=0\\f''(3)=0\implies 2c=0\end{array}\)
\(\implies a=b=c=0 \implies ker(\alpha)=\{0_{\mathcal{P}_2(\mathbb{R})}\}\)
Then \(nullity(\alpha)=\dim ker(\alpha)=0\) and if we use the dimension formula then, \(rank(\alpha)=\dim \mathcal{P}_2(\mathbb{R})-nullity(\alpha)=3-0=3\)
Third, we will find the representation matrix \(\phi_{BD}(\alpha)\), where \(B=\{1+x,1-x,x^2\}\) is an ordered basis for \(\mathcal{P}_2(\mathbb{R})\)
and
\(D=\begin{Bmatrix}\begin{bmatrix}1 & 0\\0 &0\end{bmatrix},\begin{bmatrix}0 & 1\\0 &0\end{bmatrix},\begin{bmatrix}0 & 0\\1 &0\end{bmatrix},\begin{bmatrix}0 & 0\\0 &1\end{bmatrix}\end{Bmatrix}\)
is an ordered basis for \(\mathbf{M}_{2\times 2}(\mathbb{R})\)
Share on
You may also like
Citation
@online{islam2021,
author = {Islam, Rafiq},
title = {Matrix {Representation:} {Change} of {Basis}},
date = {2021-01-21},
url = {https://mrislambd.github.io/posts/matrixrep/},
langid = {en}
}