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In the world of data analysis and machine learning, statistics plays a vital role in making sense
of the data. Whether you’re estimating parameters, testing hypotheses, or understanding
relationships between variables, statistical concepts guide how we interpret data. In this post,
I want to summarise and collect some fundamental statistical ideas that are quite common
and asked in many data science, machine learning, and quant interviews

Basic Statistical Terminologies

The mean

The mean is one of the most basic statistical concepts and represents the average value of
a dataset. It’s calculated by summing all the values in a dataset and then dividing by the
number of observations.

Mathematically, for a set of discrete observations 𝑥1, 𝑥2, ..., 𝑥𝑛, the mean 𝜇 or Expected Value
is defined as:
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𝜇 = 1
𝑛

𝑛
∑
𝑖=1

𝑥𝑖

⟹ 𝔼[𝑋] =
𝑛

∑
𝑖=1

𝑥𝑖ℙ(𝑋 = 𝑥𝑖)

For a continuous random variable 𝑋, the mean

𝜇 = 𝔼[𝑋] = ∫
∞

−∞
𝑥𝑓𝑋(𝑥)𝑑𝑥

where, ℙ(𝑋 = 𝑥) is the probability mass function (pmf) and 𝑓𝑋(𝑥) is the probability density
function (pdf) of the random variable 𝑋, depending on whether it is discrete or contineous type.
The mean helps describe the central tendency of data, but it can be sensitive to outliers.

Variance

Variance measures the spread or dispersion of a dataset relative to its mean. It tells us how
far the individual data points are from the mean. A small variance indicates that data points
are clustered closely around the mean, while a large variance means they are spread out.

The formula for variance 𝜎2 is:

𝜎2 = 𝑉 𝑎𝑟(𝑋) = 1
𝑛

𝑛
∑
𝑖=1

(𝑥𝑖 − 𝜇)2

= 𝔼 [(𝑋 − 𝔼[𝑋])2]
= 𝔼 [(𝑋2 − 2𝑋𝔼[𝑋] + (𝔼[𝑋])2)]
= 𝔼[𝑋2] − 2𝔼[𝑋]𝔼[𝑋] + (𝔼[𝑋])2

= 𝔼[𝑋2] − (𝔼[𝑋])2

However, the population and sample variance formula are slightly different. For discrete ob-
servations, the sample variance is given as

𝑠 = 1
𝑛 − 1

𝑛
∑
𝑖=1

(𝑥𝑖 − 𝜇)2

Instead of dividing by 𝑛 we devide by 𝑛 − 1 to have the sample variance unbiased and bigger
than the population variance so that it contains the true population variance.
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Examples

1. Normal Distribution with mean 𝜇 and variance 𝜎2 has the pdf 𝑓𝑋(𝑥) = 1√
2𝜋𝜎2 exp [− (𝑥−𝜇)2

2𝜎2 ]

2. Standard Normal Distribution with mean 0 and variance 1 has the pdf 𝑓𝑋(𝑥) =
1√

2𝜋𝜎2 exp [−𝑥2
2 ]

3. Now if log 𝑋 ∼ 𝓝(0, 1) then what is the distribution of 𝑋?

Covariance

Covariance measures how two variables move together. If the covariance is positive, the two
variables tend to increase or decrease together. If negative, one variable tends to increase when
the other decreases.

The formula for covariance between two variables 𝑋 and 𝑌 is:

Cov(𝑋, 𝑌 ) = 1
𝑛

𝑛
∑
𝑖=1

(𝑋𝑖 − 𝜇𝑋)(𝑌𝑖 − 𝜇𝑌 )

However, covariance doesn’t indicate the strength of the relationship, which brings us to cor-
relation.

Correlation

Correlation is a standardized measure of the relationship between two variables. It ranges
from −1 to 1, where 1 indicates a perfect positive relationship, −1 a perfect negative relation-
ship, and 0 no relationship.

The most common correlation metric is Pearson correlation, defined as:

𝜌(𝑋, 𝑌 ) = Cov(𝑋, 𝑌 )
𝜎𝑋𝜎𝑌

Unlike covariance, correlation gives a clearer picture of the strength and direction of a linear
relationship between variables.
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P-Values and Hypothesis Testing

P-values and hypothesis testing form the backbone of inferential statistics. Hypothesis
testing is used to determine if a given assumption (the null hypothesis 𝐻0) about a popula-
tion parameter is true or not.

• The null hypothesis 𝐻0 typically suggests no effect or no difference.
• The alternative hypothesis 𝐻1 is the claim you want to test.

The p-value is the probability of observing a result as extreme as, or more extreme than, the
one obtained, assuming the null hypothesis is true. A small p-value (usually less than 0.05)
indicates that the null hypothesis is unlikely, and we may reject it in favor of the alternative
hypothesis.

Maximum Likelihood Estimation (MLE)

Maximum Likelihood Estimation (MLE) is a method for estimating the parameters of
a statistical model. The idea behind MLE is to find the parameter values that maximize
the likelihood function, which represents the probability of observing the given data under a
particular model.

Given a parameter 𝜃 and observed data 𝑋, the likelihood function is:

𝐿(𝜃|𝑋) = 𝑃(𝑋|𝜃)

MLE finds the parameter ̂𝜃 that maximizes this likelihood:

̂𝜃 = arg max
𝜃

𝐿(𝜃|𝑋)

MLE is widely used in statistical modeling, from simple linear regression to complex machine
learning algorithms.

Maximum A Posteriori (MAP)

While MLE focuses on maximizing the likelihood, Maximum A Posteriori (MAP) estima-
tion incorporates prior information about the parameters. MAP is rooted in Bayesian statistics,
where the goal is to find the parameter that maximizes the posterior distribution.

The posterior is given by Bayes’ Theorem:

𝑃(𝜃|𝑋) = 𝑃(𝑋|𝜃)𝑃 (𝜃)
𝑃 (𝑋)
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MAP finds the parameter ̂𝜃MAP that maximizes the posterior probability:

̂𝜃MAP = arg max
𝜃

𝑃(𝜃|𝑋)

Unlike MLE, MAP estimation incorporates the prior distribution 𝑃(𝜃), making it more robust
when prior knowledge is available
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