
Data Structure and Algorithms
Rafiq Islam

Table of contents

Binary Search . 1

Binary Search

1. Leetcode 69: Sqrt(x)

Given a non-negative integer, x, return the square root of x rounded down to the nearest
integer. The returned integer should be non-negative as well.

You may not use any built-in exponent function. For example, x**0.5 in python.

Example:
Input: x=4
Output: 2

Input: x=8
Output: 2

Explanation: Square root of 4 is 2 and square root of 8 is 2.8284. But we need to round
down to any fraction. Therefore, the square root of 8 is also 2.

Solution:

The square root of any number x ≥ 0 is less than or equal to x. The brute force solution
to this would be O(

√
n). Because, say x = 8, then

for i = 1 to 8:

12 = 1 < 8
22 = 4 < 8
32 = 9 > 8

1

0 20 40 60 80 100
5.0

2.5

0.0

2.5

5.0

7.5

10.0 y = x
y = log x

In contrast, if we explore binary search then the time complexity reduces to O(log n).
Say the square root is s which is the middle value in the range of 1 to x. Then if s2 > x,
we search for the root in the left half. Otherwise, if s2 < x then we search the right side.
However, when s2 < x, then s is a possible candidate for the square root.

Algorithm:

1. set left value l = 0, right value r = x

2. Compute the middle value m = l + (r − l)/2

3. If m2 > x then search the left side: set r = m − 1

4. If m2 < x then search the right side: set l = m + 1

def square_root(x):
l, r = 0, x
sq = 0
while l<=r:

m = l + (r-l)//2
if m**2 > x:

r= m-1
elif m**2 < x:

l = m+1
sq = m

else:

2

return m
return sq

print(square_root(6))

2

2. item

3. item

3

	Binary Search

