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Introduction

Regularization is a key concept in machine learning that helps prevent overfitting, improve
model generalization, and make models more robust to new data. It adds a penalty to the loss
function to discourage the model from fitting the noise in the training data, which leads to
overfitting.

• Overfitting occurs when a model performs well on the training data but fails to generalize
to new, unseen data. This happens when the model is too complex and captures both
the signal and the noise in the data.

• Underfitting, on the other hand, happens when a model is too simple to capture the
underlying patterns in the data, resulting in poor performance even on the training set.

Regularization helps strike a balance between overfitting and underfitting by controlling model
complexity and encouraging simpler models that generalize better.
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Types of Regularization

There are several types of regularization techniques used in machine learning, with the most
common being:

• L2 Regularization (Ridge Regression)
• L1 Regularization (Lasso Regression)
• Elastic Net Regularization
• Dropout (for neural networks)

Here we will discus the first two kind only.

L2 Regularization (Ridge Regression)

L2 regularization (also known as Ridge regression in linear models) adds a penalty term
to the loss function proportional to the sum of the squared coefficients (weights) of the model.
The goal is to minimize both the original loss function and the magnitude of the coefficients.

For a linear regression model, the objective is to minimize the following regularized loss
function:

J(θ) = 1
n

n∑
i=1

(yi − ŷi)2 + λ
p∑

j=1
θ2

j

Where:

• ŷi is the model’s predicted output for input xi.
• yi is the true target value.
• θj are the model parameters (coefficients).
• λ is the regularization strength, controlling the magnitude of the penalty (higher λ

increases regularization).

More about λ

• λ is a continuous non-negative scaler value, typically a floating-point number.

• Minimum λ = 0, model becomes the standard linear regression model. For smaller λ the
regularization effect is minimal, allowing the model to fit the training data more closely.

• In theory, there is no upper bound for λ. However, as λ increases, the model becomes
more regularized, and the coefficients tend to shrink toward zero.
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Selecting the optimal value of λ is crucial. Typically, it’s done via cross-validation, where
different values of λ are tried, and the model is evaluated based on its performance on the
validation set. The value that results in the best generalization is selected.

L2 regularization shrinks the coefficients towards zero but doesn’t force them to be exactly
zero, thus retaining all features in the model.

import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import Ridge,LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import mean_squared_error

# Generate synthetic data
np.random.seed(0)
X = 2 * np.random.rand(100, 1)
y = 4 + 3 * X + np.random.randn(100, 1)

# Split the data into training and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# LinearRegression model
linear_model = LinearRegression()
linear_model.fit(X_train,y_train)
y_pred_linear = linear_model.predict(X_test)
mse_linear = mean_squared_error(y_test, y_pred_linear)
print(f"Mean Squared Error (Linear Regression): {mse_linear:.2f}")

# Train Ridge regression model (L2 Regularization)
sc = StandardScaler()
X_train_sc = sc.fit_transform(X_train)
X_test_sc = sc.transform(X_test)
ridge_model = Ridge(alpha=10) # alpha is the regularization strength (lambda)
ridge_model.fit(X_train_sc, y_train)

# Predictions and evaluation
y_pred_ridge = ridge_model.predict(X_test_sc)
mse_ridge = mean_squared_error(y_test, y_pred_ridge)
print(f"Mean Squared Error (Ridge Regression): {mse_ridge:.2f}")

# Plot the results
plt.scatter(X_test, y_test, color='blue', label='True Data')
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plt.plot(X_test, y_pred_linear, color='green', label='Linear Prediction')
plt.plot(X_test, y_pred_ridge, color='red', label='Ridge Prediction')
plt.xlabel('X')
plt.ylabel('y')
plt.title('Ridge Regularization')
plt.legend()
plt.gca().set_facecolor('#f4f4f4')
plt.gcf().patch.set_facecolor('#f4f4f4')
plt.savefig('rg.png')
plt.show()

Mean Squared Error (Linear Regression): 0.92
Mean Squared Error (Ridge Regression): 0.92
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In this example, alpha corresponds to λ, the regularization strength. A higher value of alpha
will result in stronger regularization, shrinking the model coefficients more.

4



L1 Regularization (Lasso Regression)

L1 regularization (also known as Lasso regression) adds a penalty term proportional to
the sum of the absolute values of the coefficients. This type of regularization can force some
coefficients to be exactly zero, effectively performing feature selection.

The objective function for L1 regularization is:

J(θ) = 1
n

n∑
i=1

(yi − ŷi)2 + λ
p∑

j=1
|θj |

Where:

• The terms are the same as those for L2 regularization.
• The penalty is the absolute value of the coefficients instead of the squared value.

L1 regularization has the effect of making some coefficients exactly zero, which means it can be
used to reduce the number of features in the model.

from sklearn.linear_model import Lasso

print(f"Mean Squared Error (Linear Regression): {mse_linear:.2f}")

# Train Lasso regression model (L1 Regularization)
lasso_model = Lasso(alpha=.5) # alpha is the regularization strength (lambda)
lasso_model.fit(X_train_sc, y_train)

# Predictions and evaluation
y_pred_lasso = lasso_model.predict(X_test_sc)
mse_lasso = mean_squared_error(y_test, y_pred_lasso)
print(f"Mean Squared Error (Lasso Regression): {mse_lasso:.2f}")

# Plot the results
plt.scatter(X_test, y_test, color='blue', label='Data')
plt.plot(X_test, y_pred_linear, color='red', label='Linear Prediction')
plt.plot(X_test, y_pred_lasso, color='green', label='Lasso Prediction')
plt.xlabel('X')
plt.ylabel('y')
plt.title('Lasso Regularization')
plt.legend()
plt.gca().set_facecolor('#f4f4f4')
plt.gcf().patch.set_facecolor('#f4f4f4')
plt.show()

5



Mean Squared Error (Linear Regression): 0.92
Mean Squared Error (Lasso Regression): 1.02
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Discussion

Choosing the Right λ

Selecting the optimal value of λ is crucial. Typically, it’s done via cross-validation, where
different values of λ are tried, and the model is evaluated based on its performance on the
validation set. The value that results in the best generalization is selected.

Impact of λ on Bias-Variance Trade-off

• Low λ: Leads to a low bias and high variance model because the model closely fits the
training data.

• High λ: Leads to a high bias and low variance model, as the regularization prevents the
model from fitting the training data too closely, reducing the variance but increasing the
bias.
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Facts

Scaling is required for both Ridge and Lasso regression as they are not scale invariant due to
the different norms in the definition.

Criteria L1 Regularization (Lasso) L2 Regularization (Ridge)

Feature Selection Can set some coefficients
exactly to zero, effectively
performing feature selection.

Does not set coefficients to
zero; shrinks them but retains
all features.

Handling
Multicollinearity

Not ideal for handling highly
correlated features, as it may
arbitrarily select one feature
and discard the others.

Works better in the presence
of multicollinearity, as it
tends to spread the penalty
across correlated features.

Effect on Coefficients Sparse solutions; coefficients
are either zero or relatively
large, favoring simpler models
with fewer features.

Coefficients are small and
distributed more evenly
across all features, leading to
less sparse solutions.

Interpretability Easier to interpret, as some
features are removed,
simplifying the model.

All features remain in the
model, making it harder to
interpret when there are
many features.

Computational
Complexity

Can be computationally
intensive with a large number
of features due to the
non-smooth nature of the L1
penalty.

Less computationally
expensive due to its smooth
penalty term (squared
coefficients).

Best Suited For When you want a sparse
model with feature selection,
and when the number of
irrelevant features is large.

When you want to retain all
features, especially in cases of
multicollinearity, and avoid
overfitting by shrinking
coefficients.

When to Use • When you expect only a
few features to be
important.

• When you want
automatic feature
selection.

• When you need a
simple, interpretable
model.

When you believe all features
contribute to the target.
When dealing with
multicollinear data.
When you want to prevent
overfitting but don’t want
feature elimination.
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