
Dimensionality Reduction: Principle
Component Analysis (PCA)

Rafiq Islam

2024-09-24

Table of contents

Introduction . 1
What is Principal Component Analysis (PCA)? . 2
Benefits of PCA . 6
Limitations of PCA . 7
PCA in Python: Implementation and Visualization 7

References . 9

Introduction

Principal Component Analysis (PCA) is a powerful technique used in machine learning and
statistics for unsupervised dimensionality reduction. It transforms high-dimensional data
into a lower-dimensional form while preserving the most important features or “components”
of the data. This is particularly useful when dealing with large datasets that are difficult to
visualize or computationally expensive to process. For example, if we have a dataset that
contains a lot of images of 20x20 pixels and we convert the images to one dimensional vectors
then there are total 400 features which makes the analysis harder. PCA finds a low (best d)
dimensional subspace approximation that minimizes the least square error

1

What is Principal Component Analysis (PCA)?

Let’s start from the beginning. If we have a set of orthogonal basis vectors say u =

(u1, u2, . . . , up) then uT
i uj = δij for 1 ≤ i, j ≤ m. For example, consider u1 =

[
1
0

]
and

u2 =
[
0
1

]
import numpy as np
import matplotlib.pyplot as plt

fig, ax = plt.subplots()
ax.set_xlim(-0.5,2)
ax.set_ylim(-0.5,2)
ax.axhline(0, color='black', linewidth=0.5)
ax.axvline(0, color='black', linewidth=0.5)
ax.quiver(0,0,1,0, color='red', scale=1, scale_units='xy', angles='xy')
ax.quiver(0,0,0,1, color='red', scale=1, scale_units='xy', angles='xy')
ax.text(1.1,0, 'u_1', color='red', fontsize=12)
ax.text(0,1.1, 'u_2', color='red', fontsize=12)
ax.set_aspect('equal')
plt.grid(True)
plt.gca().set_facecolor('#f4f4f4')
plt.gcf().patch.set_facecolor('#f4f4f4')
plt.show()

0.5 0.0 0.5 1.0 1.5 2.0
0.5

0.0

0.5

1.0

1.5

2.0

u1

u2

2

uT
1 u2 =

[
1 0

] [0
1

]
= 0 and uT

2 u1 =
[
0 1

] [1
0

]
= 0

uT
1 u1 =

[
1 0

] [1
0

]
= 1 and uT

2 u2 =
[
0 1

] [0
1

]
= 1

Now suppose we have a data set X with columns are features and kth observation x(k) =
(x(k)

1 , x
(k)
2 , . . . , x

(k)
p)T . Now let µ = x̄ = 1

n

∑n
k=1 xk, that is for

X =

x11 x12 . . . x1p

x21 x22 . . . x2p
...

...
xn1 xn2 . . . xnp

µj = 1

n

n∑
i=1

xij

µ =

µ1
µ2
...

µp

 = 1
n

n∑
i=1

Xi

Now with the orthogonal vectors, we can write

xk − µ =
p∑

i=1

[
(xk − µ) · ui

]
ui =

p∑
i=1

ak
i ui

In PCA, we aim to find (u1, u2, . . . , ud) that minimizes the reconstruction error, defined as the
squared distance between each data point xk and its projection onto the subspace spanned by
the top d principle components:

E(u1, u2, . . . , ud) =
n∑

k=1

∥∥∥∥∥xk −
(

µ +
d∑

i=1
ak

i ui

)∥∥∥∥∥
2

Here ∑d
i=1 ak

i ui is the projection of xk onto the subspace spanned by the top d dimensional
components. The term inside the norm, xk −

(
µ +∑d

i=1 ak
i ui

)
, represents the residual error

after projecting xk onto this subspace. The goal is to minimize this error.

The residual variance corresponds to the directions (or principal components) not captured
by the top d principal components. Specifically, these are the components corresponding to
ud+1, . . . , up, where p is the total number of features (or components).

3

Now, the norm inside the error function can be decomposed as follows:

xk −
(

x̄ +
d∑

i=1
ak

i ui

)
=
(
xk − x̄

)
−

d∑
i=1

ak
i ui

We define zk = xk − x̄, so the error becomes:

E(u1, . . . , ud) =
n∑

k=1

∥∥∥∥∥zk −
d∑

i=1
ak

i ui

∥∥∥∥∥
2

The key idea here is that zk is a vector in the original p-dimensional space, and we are
approximating it by projecting it onto the top d-dimensional subspace spanned by u1, . . . , ud.

Since u1, . . . , up form an orthogonal basis, zk can be completely expressed in terms of all the
basis vectors u1, . . . , up. In particular:

zk =
p∑

i=1
ak

i ui

where ak
i = zk · ui are the projections of zk onto each basis vector ui. Therefore, the reconstruc-

tion error E(u1, . . . , ud) is the squared norm of the residual part of zk that is not captured
by the top d principal components:

E(u1, . . . , ud) =
n∑

k=1

M∑
i=d+1

(ak
i)2

This means that the error comes from the projection of zk onto the remaining p − d principal
components, i.e., ud+1, . . . , up. Thus,

E(u) =
n∑

k=1

∥∥∥∥∥∥
p∑

i=d+1
(zk · ui)ui

∥∥∥∥∥∥
2

=
n∑

k=1

p∑
i=d+1

(
zk · ui

)2

We start with the dot product zk · ui, which is just a scalar:

zk · ui = (zk)T ui

4

This is simply the sum of the element-wise products of zk and ui:

zk · ui =
M∑

j=1
zk

j uij

=⇒ (zk · ui)2 =

 M∑
j=1

zk
j uij

2

=⇒

 M∑
j=1

zk
j uij

2

=
M∑

j=1

M∑
l=1

zk
j zk

l uijuil

Notice that we can rewrite the product zk
j zk

l as an outer product of the vector zk with
itself:

zkzkT

The outer product zkzkT is a matrix, specifically an p × p matrix. Each element of this matrix
at position (j, l) is zk

j zk
l , exactly what we have in the double sum.

So, instead of writing out all the sums explicitly, we can represent the whole thing as a matrix:

(zk · ui)2 = uT
i (zkzkT)ui

This is called a quadratic form. So,

E(u) =
n∑

k=1

∥∥∥∥∥∥
p∑

i=d+1
(zk · ui)ui

∥∥∥∥∥∥
2

=
n∑

k=1

p∑
i=d+1

(
zk · ui

)2

=
n∑

k=1

p∑
i=d+1

uT
i zkzkT ui

=
p∑

i=d+1
uT

i Σui

where,

• Σ = ∑n
k=1(xk − µ)(xk − µ)T = XT X

• X = (x1 − µ, x2 − µ, . . . , xp − µ)T

5

So now we have
E(u) =

p∑
i=d+1

uT
i Σui

and E(u) is minimized when ui’s are the eigenvectors of Σ. Then

E(u) =
p∑

i=d+1
uT

i λiui =
p∑

i=d+1
λi

and we get our desired ud+1, . . . , up components that minimizes the projection error. So
if we take the first d of these correspond to the d-largest eigenvalues we get the principle
components.

Long story short

• We have n data points with p column vectors x1, x2, . . . , xp

• We compute the mean µ = 1
n

∑n
k=1 xk

• Then we compute the matrix X = (x1 − µ, x2 − µ, . . . , xp − µ)T

• Next, compute the eigenvalues of Σ = ∑n
k=1(xk − µ)(xk − µ)T = XT X and short them

in decreasing order

• Choose d, the number of principle components
• Then we get the principle components P = [v1, v2, . . . , vd]p×d

• To project any column vector z, we compute projection(z) = P T (z − µ)

Benefits of PCA

• Dimensionality Reduction: PCA can reduce the number of variables, which speeds
up algorithms and makes models more interpretable.

• Visualization: PCA is often used to project high-dimensional data into 2D or 3D for
visualization.

• Noise Reduction: By focusing on the principal components, PCA can eliminate
irrelevant noise in the data.

• Avoid Multicollinearity: PCA removes multicollinearity by creating uncorrelated
principal components.

6

Limitations of PCA

• Linear Assumption: PCA assumes linear relationships between features. Non-linear
patterns in data are not captured well by PCA.

• Interpretability: While PCA can simplify data, the new components may not be easily
interpretable.

• Loss of Information: Reducing dimensions might result in the loss of some information
or variance, depending on how many components are retained.

PCA in Python: Implementation and Visualization

Now that we understand the theory behind PCA, let’s implement it in Python using the
sklearn library and visualize the results.

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
from sklearn.datasets import load_iris

For this example, we will use the famous Iris dataset, which contains 4 features (sepal length,
sepal width, petal length, and petal width) of 3 species of iris flowers.

Load the Iris dataset
iris = load_iris()
X = iris.data
y = iris.target

Standardize the data
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

We will reduce the data from 4 dimensions to 2 for visualization.

pca = PCA(n_components=2)
X_pca = pca.fit_transform(X_scaled)

print(f"Explained Variance Ratio: {pca.explained_variance_ratio_}")

7

Explained Variance Ratio: [0.72962445 0.22850762]

The explained variance ratio shows how much variance each principal component captures. In
many cases, the first two components capture most of the variance.

Let’s plot the Iris dataset using the first two principal components.

plt.figure(figsize=(8, 6))
colors = ['red', 'blue', 'green']
for i, color in enumerate(colors):

plt.scatter(X_pca[y == i, 0], X_pca[y == i, 1], label=iris.target_names[i], color=color)

plt.title('PCA of Iris Dataset')
plt.xlabel('Principal Component 1')
plt.ylabel('Principal Component 2')
plt.legend()
plt.grid(True)
plt.savefig('pca.png')
plt.gca().set_facecolor('#f4f4f4')
plt.gcf().patch.set_facecolor('#f4f4f4')
plt.show()

8

3 2 1 0 1 2 3
Principal Component 1

2

1

0

1

2

Pr
in

cip
al

 C
om

po
ne

nt
 2

PCA of Iris Dataset

setosa
versicolor
virginica

The plot shows the data projected onto the first two principal components. We can observe
how the three species cluster in the reduced 2D space. This visualization helps us see the
separability of the classes using only two dimensions, instead of four.

References

1. Jolliffe, I. T. (2002). Principal Component Analysis. Springer Series in Statistics.

• The seminal book on PCA, providing an in-depth theoretical background.

2. Shlens, J. (2014). A tutorial on principal component analysis. arXiv preprint
arXiv:1404.1100.

• An excellent tutorial that breaks down PCA concepts with clear mathematical
derivations.

9

3. Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.

• This book offers a comprehensive guide to PCA and other machine learning tech-
niques.

4. Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical
Learning. Springer.

• Covers PCA as well as a variety of other machine learning and statistical techniques.

5. Géron, A. (2019). Hands-On Machine Learning with Scikit-Learn, Keras, and Tensor-
Flow. O’Reilly Media.

• A practical guide with hands-on code examples, including PCA implementation in
Python.

Share on

�

ï

�

You may also like

10

	Introduction
	What is Principal Component Analysis (PCA)?
	Benefits of PCA
	Limitations of PCA
	PCA in Python: Implementation and Visualization
	References

