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Introduction: Non-parametric Models

Non-parametric model is a statistical model that does not make any assumptions about the
underlying data distributions, meaning it does not require specifying functional form for
the relationships between variables, instead learning directly from the data points without
pre-defined parameters.

K−Nearest Neighbors (KNN) Algorithm

K-Nearest Neighbors (KNN) is one of the simplest yet effective algorithms used in supervised
learning for both classification and regression problems. It’s a lazy learner—meaning it does
not perform any specific training of a model but memorizes the training dataset and makes
predictions based on proximity in feature space.
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We are given a set of data points (x̄i, yi) with x̄i ∈ Rd and yi ∈ R
1. Choose the number of neighbors K
2. Compute the distance between the new data point and all the training samples
3. Select the K nearest neighbors based on distance.
4. For classification, the output is the most common class among the K neighbors.
5. For regression, the output is the average of the target values of K neighbors

K−Nearest Neighbors Classification

The KNN classification algorithm can be summarized with the following steps:

Given:

• Xtrain = [x1, x2, . . . , xn] (the training data features)

• ytrain = [y1, y2, . . . , yn] (the training data labels)

• xtest (the new data point for which we want to predict the class)

Steps

1. Compute Distance: For each training point xi, calculate the distance d(xi, xtest) using a
distance metric like Euclidean distance:

d(xi, xtest) =

√√√√ m∑
j=1

(xi,j − xtest,j)2

where m is the number of features.

2. Find K Nearest Neighbors: Sort the distances and pick the K closest points.

3. Majority Voting: Look at the labels yi of the K nearest neighbors. The predicted label
for xtest is the most frequent label (majority vote) among the neighbors.

For example, let’s say our data looks like this

Table 1: Training Data

area bedroom bathroom price condition
7420 4 2 1300000 1
7520 3 3 1450000 1
6420 2 1 1110000 0
5423 3 2 1363400 0
5423 3 1 1263400 1

Table 2: Test Data

area bedroom bathroom price condition
5420 3 2.5 1302000
7120 5 4 1453000
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For the data points xi from the training set and a single test data point xt =
[5420, 3, 2.5, 1302000]

d(x1, xt) =
√

(x11 − xt1)2 + (x12 − xt2)2 + (x13 − xt3)2 + (x14 − xt4)2

=
√

(7420 − 5420)2 + (4 − 5)2 + (2 − 2.5)2 + (1300000 − 1302000)2 ≈ 2828.43

d(x2, xt) =
√

(x21 − xt1)2 + (x22 − xt2)2 + (x23 − xt3)2 + (x24 − xt4)2

=
√

(7520 − 5420)2 + (3 − 5)2 + (3 − 2.5)2 + (1450000 − 1302000)2 ≈ 14805.92

d(x3, xt) =
√

(x31 − xt1)2 + (x32 − xt2)2 + (x33 − xt3)2 + (x34 − xt4)2

=
√

(6420 − 5420)2 + (2 − 5)2 + (1 − 2.5)2 + (1110000 − 1302000)2 ≈ 19209.38

d(x4, xt) =
√

(x41 − xt1)2 + (x42 − xt2)2 + (x43 − xt3)2 + (x44 − xt4)2

=
√

(6420 − 5420)2 + (2 − 5)2 + (1 − 2.5)2 + (1110000 − 1302000)2 ≈ 19209.38

d(x5, xt) =
√

(x51 − xt1)2 + (x52 − xt2)2 + (x53 − xt3)2 + (x54 − xt4)2

=
√

(5423 − 5420)2 + (3 − 5)2 + (1 − 2.5)2 + (1263400 − 1302000)2 ≈ 38602.95

So the distances

• d1 = d(x1, xt) ≈ 2828.43
• d2 = d(x2, xt) ≈ 14805.92
• d3 = d(x3, xt) ≈ 19209.38
• d4 = d(x4, xt) ≈ 61405.03
• d5 = d(x5, xt) ≈ 38602.95

If we sort the above distances, we get d1 < d2 < d3 < d5 < d4 and if we choose K = 3 nearest
neighbors, then d1 < d2 < d3 and

• Data point x1 has class label condition= 1

• Data point x2 has class label condition= 1

• Data point x3 has class label condition= 0

We can clearly see that the majority class (2 out of 3) is condition= 1. Therefore, for the
given test data, the label would be also condition= 1.
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KNN Classifier Using Python

Here’s how to implement KNN for classification in Python from scratch:

import numpy as np
import pandas as pd
from collections import Counter

class CustomKNNclassifier:

def __init__(self, k=3):
self.k = k

def fit(self, X, Y):
self.X = X
self.Y = Y

def predict(self, X):
predictions = [self._predict(x) for x in X.to_numpy()]
return np.array(predictions)

def _predict(self, x):
# Compute the Euclidean distances
distances = [np.linalg.norm(x - X_train) for X_train in self.X.to_numpy()]

# Get the indices of the k nearest neighbors
k_indices = np.argsort(distances)[:self.k]

# Get the labels of k nearest neighbors
k_nearest_neighbors = [self.Y[i] for i in k_indices]

# Return the most common label
common_label = Counter(k_nearest_neighbors).most_common(1)[0][0]
return common_label

# Example usage
train_data = pd.DataFrame(

{
'area': [7420, 7520, 6420, 5423, 5423],
'bedroom': [4, 3, 2, 3, 3],
'bathroom': [2, 3, 1, 2, 1],
'price': [1300000, 1450000, 1110000, 1363400, 1263400],
'condition': [1, 1, 0, 0, 1]
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}
)
test_data = pd.DataFrame(

{
'area': [5420, 7120],
'bedroom': [3, 5],
'bathroom': [2.5, 4],
'price': [1302000, 1453000]

}
)

X_train = train_data.drop('condition', axis=1)
y_train = train_data['condition']

X_test = test_data

# Initialize and train the KNN model
classifier = CustomKNNclassifier(k=3)
classifier.fit(X_train, y_train)

# Predict on test data
predictions = classifier.predict(X_test)
print(predictions)

[1 1]

So the complete test set would be

area bedroom bathroom price condition
5420 3 2.5 1302000 1
7120 5 4 1453000 1

Note: We did not scale the data before applying the classifier. If we scaled, the result might
have been different (?). In practice, we need to scale the data before applying KNN algorithm.
Because computing a large number of distances with big numbers may get us wrong order and
also time cosuming.
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K−Nearest Neighbors Regression

KNN regression is slightly different from classification. Instead of taking a majority vote, we
predict the output by averaging the values of the K nearest neighbors.

Given:

• Xtrain = [x1, x2, . . . , xn] (the training data features)
• ytrain = [y1, y2, . . . , yn] (the continuous target values)
• xtest (the new data point for which we want to predict the value)

Step-by-Step:

1. Compute Distance: Calculate the Euclidean distance between xtest and each training
point xi.
2. Find K Nearest Neighbors: Sort the distances and select the K nearest points.
3. Averaging: The predicted value for xtest is the average of the target values yi of the K
nearest neighbors:

ŷtest = 1
K

K∑
i=1

yi

KNN Regressor Using Python

Now we use the same training data and test data for this regression. But this time, our target
variable is price and test data looks like this

area bedroom bathroom Condition price
5420 3 2.5 1
7120 5 4 1

After scaling the data looks like this

Table 5: Training Data

area bedroom bathroom condition price
1.213 1.414 0.267 0.730 1300000
1.336 0.000 1.603 0.730 1450000
-0.026 -1.414 -1.336 -1.095 1110000
-1.261 0.000 0.267 -1.095 1363400
-1.261 0.000 -1.336 0.730 1263400

Table 6: Test Data

area bedroom bathroom condition price
-1.266 0.000 0.803 0.730
0.854 2.828 3.876 0.730
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Now we see that

d1 = d(x1, xt) =
√

(1.213 − (−1.266))2 + (1.414 − 0)2 + (0.267 − 0.803)2 + (0.730 − 0.730)2 ≈ 2.904

d2 = d(x2, xt) =
√

(1.336 − (−1.266))2 + (0.000 − 0)2 + (1.603 − 0.803)2 + (0.730 − 0.730)2 ≈ 2.721

d3 = d(x3, xt) =
√

(−0.026 − (−1.266))2 + (−1.414 − 0)2 + (−1.336 − 0.803)2 + (−1.095 − 0.730)2 ≈ 3.382

d4 = d(x4, xt) =
√

(−1.261 − (−1.266))2 + (0.000 − 0)2 + (0.267 − 0.803)2 + (−1.095 − 0.730)2 ≈ 1.902

d5 = d(x5, xt) =
√

(−1.261 − (−1.266))2 + (0.000 − 0)2 + (−1.336 − 0.803)2 + (0.730 − 0.730)2 ≈ 2.140

But this time, the order is d4 < d5 < d2 < d1 < d3 and for k = 3 we have d4 < d5 < d2. The
price for this distances

• For data point x4, the price= 1363400

• For data point x5, the price= 1263400

• For data point x2, the price= 1450000

So the predicted price should be the average of this three prices, that for xt = [5420, 3, 2.5, 1]
the price we expect

price = 1363400 + 1263400 + 1450000
3 = 1358933.33

Here’s how to implement KNN for regression in Python from scratch and we see if we get the
same as the hand calculation.

from sklearn.preprocessing import StandardScaler

class CustomKNNRegressor:
def __init__(self, k=3):

self.k = k

def fit(self, X_train, y_train):
self.X_train = X_train
self.y_train = y_train.to_numpy()

def predict(self, X_test):
predictions = [self._predict(x) for x in X_test]
return np.array(predictions)
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def _predict(self, x):
distances = [np.linalg.norm(x-x_train) for x_train in self.X_train]
k_indices = np.argsort(distances)[:self.k]
k_nearest_values = [self.y_train[i] for i in k_indices]
return np.mean(k_nearest_values)

X_train = train_data.drop('price', axis=1)
y_train = train_data['price']

test_data = pd.DataFrame(
{

'area': [5420, 7120],
'bedroom': [3, 5],
'bathroom': [2.5, 4],
'condition': [1, 1]

}
)

X_test = test_data

scaler = StandardScaler()

X_train_sc = scaler.fit_transform(X_train)
X_test_sc = scaler.transform(X_test)

# Initialize and train the KNN regressor
regressor = CustomKNNRegressor(k=3)
regressor.fit(X_train_sc, y_train)

# Predict on test data
predictions = regressor.predict(X_test_sc)
print(np.round(predictions,2))

[1358933.33 1371133.33]

Choosing the Value of K

The value of K significantly affects the performance of the KNN algorithm:
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• Small K: If K is too small, the model is sensitive to noise, and the predictions can be
unstable.

• Large K: If K is too large, the model becomes more biased, and the predictions may be
overly smoothed.

A typical way to choose K is by trying different values and using cross-validation to see which
value yields the best performance.

Distance Metrics

The default metric for KNN is Euclidean distance, but depending on the dataset, other
metrics like Manhattan distance or Minkowski distance might be more suitable.

• Euclidean Distance (L2 Norm):

d(xi, xj) =

√√√√ m∑
k=1

(xi,k − xj,k)2

• Manhattan Distance (L1 Norm):

d(xi, xj) =
m∑

k=1
|xi,k − xj,k|

KNN Implementation

In this section we use KNN regression for Boston Housing dataset and find the optimal K
using the KFold cross-validation.

df = pd.read_csv('HousingData.csv')

Next we see if there is any missing values. If we have any, we will skip those observations.

print(df.isnull().sum())
df.dropna(axis=1,inplace=True)
df.head()
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CRIM 20
ZN 20
INDUS 20
CHAS 20
NOX 0
RM 0
AGE 20
DIS 0
RAD 0
TAX 0
PTRATIO 0
B 0
LSTAT 20
MEDV 0
dtype: int64

NOX RM DIS RAD TAX PTRATIO B MEDV
0 0.538 6.575 4.0900 1 296 15.3 396.90 24.0
1 0.469 6.421 4.9671 2 242 17.8 396.90 21.6
2 0.469 7.185 4.9671 2 242 17.8 392.83 34.7
3 0.458 6.998 6.0622 3 222 18.7 394.63 33.4
4 0.458 7.147 6.0622 3 222 18.7 396.90 36.2

The data looks clean and ready to implement to the KNNRegressor. Note that, for predictive
modeling we need a lot of things, such as exporatory data analysis (EDA), feature engineering,
preprocessing and others. However, we will simply apply the KNNRegressor that we built from
scratch and built-in library function from scikit-learn to explore the algorithm and find the
optimal K.

from sklearn.model_selection import KFold, train_test_split
from sklearn.metrics import mean_squared_error,r2_score
import matplotlib.pyplot as plt

X = df.drop('MEDV',axis=1)
y = df['MEDV']

X_train, X_test, y_train, y_test = train_test_split(
X,y, test_size=0.30, random_state=123

)
scaler = StandardScaler()
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X_train_sc = scaler.fit_transform(X_train)
X_test_sc = scaler.transform(X_test)

k_values = [5,15,30,40]

kfold = KFold(n_splits=7, shuffle=True, random_state=123)
mses = np.zeros((7,4))

for i,(train_index,test_index) in enumerate(kfold.split(X_train_sc)):
X_train_train = X_train_sc[train_index]
X_train_holdout = X_train_sc[test_index]

y_train_train = y_train.iloc[train_index]
y_train_holdout = y_train.iloc[test_index]

for j,k in enumerate(k_values):
regressor1 = CustomKNNRegressor(k=k)
regressor1.fit(X_train_train, y_train_train)
preds = regressor1.predict(X_train_holdout)
mses[i,j] = mean_squared_error(preds, y_train_holdout)

plt.scatter(np.zeros(7),mses[:,0], s=60, c='white', edgecolors='black', label='Single Split')
plt.scatter(np.ones(7),mses[:,1],s=60, c='white', edgecolors='black')
plt.scatter(2*np.ones(7),mses[:,2],s=60, c='white', edgecolors='black')
plt.scatter(3*np.ones(7),mses[:,3],s=60, c='white', edgecolors='black')
plt.scatter([0,1,2,3], np.mean(mses, axis=0), s=60,c='r', marker='X', label='Mean')
plt.legend(loc='upper right')
plt.xticks([0,1,2,3],['K=5','K=15','K=30','K=40'])
plt.ylabel('MSE')
plt.gca().set_facecolor('#f4f4f4')
plt.gcf().patch.set_facecolor('#f4f4f4')
plt.show()
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So, K = 5 seems optimal based on our custom built regressor. Now if we do the same thing
using the scikit-learn library

from sklearn.neighbors import KNeighborsRegressor

mses = np.zeros((7,4))

for i,(train_index,test_index) in enumerate(kfold.split(X_train_sc)):
X_train_train = X_train_sc[train_index]
X_train_holdout = X_train_sc[test_index]

y_train_train = y_train.iloc[train_index]
y_train_holdout = y_train.iloc[test_index]

for j,k in enumerate(k_values):
regressor2 = KNeighborsRegressor(k)
regressor2.fit(X_train_train, y_train_train)
preds = regressor2.predict(X_train_holdout)
mses[i,j] = mean_squared_error(preds, y_train_holdout)

plt.scatter(np.zeros(7),mses[:,0], s=60, c='white', edgecolors='black', label='Single Split')
plt.scatter(np.ones(7),mses[:,1],s=60, c='white', edgecolors='black')
plt.scatter(2*np.ones(7),mses[:,2],s=60, c='white', edgecolors='black')
plt.scatter(3*np.ones(7),mses[:,3],s=60, c='white', edgecolors='black')
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plt.scatter([0,1,2,3], np.mean(mses, axis=0), s=60,c='r', marker='X', label='Mean')
plt.legend(loc='upper right')
plt.xticks([0,1,2,3],['K=5','K=15','K=30','K=40'])
plt.ylabel('MSE')
plt.gca().set_facecolor('#f4f4f4')
plt.gcf().patch.set_facecolor('#f4f4f4')
plt.show()
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In both method, we got K = 5 is the optimal number of neighbors for KNN regression. Let’s
apply this in our test dataset

regressor = CustomKNNRegressor(k=5)
regressor.fit(X_train_sc, y_train)

predictions = regressor.predict(X_test_sc)

mse = mean_squared_error(predictions,y_test)
rsquared = r2_score(predictions,y_test)
print('MSE = {}'.format(np.round(mse,2)),' and R-square = {}'.format(np.round(rsquared,2)))

MSE = 41.26 and R-square = 0.23
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Conclusion

K-Nearest Neighbors is a simple, intuitive algorithm that can be highly effective in both
classification and regression problems. Its simplicity comes from the fact that it doesn’t make
any assumptions about the underlying data distribution (it’s non-parametric). However, its
performance can be sensitive to the choice of K and the distance metric. Although it’s easy
to implement, KNN can become computationally expensive for large datasets, as it requires
calculating distances between the test point and all training samples. If you need an efficient
version, it’s always possible to use optimized libraries like scikit-learn, but writing the algorithm
from scratch helps build a solid understanding.

When to Use KNN Over Linear Regression?

We would consider using KNN regression over linear regression in the following situations:

• Non-linear relationships: When the data shows non-linear patterns or complex
relationships between features and target variables that cannot be captured by a straight
line.

• Local behavior: When data has local patterns or clusters, and you believe that
predictions should rely on the nearest data points.

• Minimal assumptions: If you do not want to assume a specific relationship between
the features and target, KNN’s non-parametric nature might be more appropriate.

• Smaller datasets: KNN works well with smaller datasets and lower-dimensional data
where calculating distances is feasible and efficient.

However, KNN becomes less efficient and struggles in high dimensions or when the dataset is
large. In those cases, linear regression or other more scalable models may be more appropriate
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