
Unsupervised Learning: K-Means Clustering
Rafiq Islam

2024-09-28

Table of contents

Introduction . 1
Mathematics Behind K-Means . 2

Objective Function (Inertia) . 2
How to Choose the Best k Value? . 3

1. The Elbow Method . 3
2. Silhouette Score . 3
3. Gap Statistic . 3

Python Implementation of K-Means . 3
Synthetic Data . 3
Real Data . 7

Limitations of K-Means Clustering . 13
1. Assumption of Spherical Clusters . 14
2. Sensitivity to Initialization . 14
3. Needs to Specify k in Advance . 14
4. Outliers and Noise Sensitivity . 14
5. Equal Cluster Size Assumption . 15
6. Non-Convex Shapes . 15

References . 15

Introduction

Clustering is a fundamental technique in unsupervised learning where the goal is to group
similar data points into clusters. One of the most popular algorithms for clustering is K-
Means. K-Means is a centroid-based algorithm that partitions the dataset into k clusters.
The algorithm iterates over data points, assigning each to one of k centroids (cluster centers),
and then updates the centroids based on the current assignments. The objective is to minimize
the sum of squared distances (also known as inertia) between each data point and its assigned
centroid.

1

Mathematics Behind K-Means

The K-Means algorithm works through the following key steps:

1. Initialization: Randomly select k points from the dataset as initial centroids.

2. Assignment Step: For each data point, assign it to the closest centroid based on the
Euclidean distance:

distance(xi, µj) =

√√√√ D∑
d=1

(xd
i − µd

j)2

where:

• xi is the i-th data point.
• µj is the j-th centroid.
• D is the number of features (dimensions).

3. Update Step: After all data points are assigned, recalculate the centroid of each cluster
as the mean of all data points assigned to it:

µj = 1
nj

nj∑
i=1

xi

where nj is the number of points in cluster j.

4. Repeat: The assignment and update steps are repeated until the centroids no longer
change or the maximum number of iterations is reached.

Objective Function (Inertia)

The objective of K-Means is to minimize the following cost function, also called inertia or
within-cluster sum of squares:

J =
k∑

j=1

nj∑
i=1

∥xi − µj∥2

This measures how compact the clusters are, i.e., how close the points within each cluster are
to their centroid.

2

How to Choose the Best k Value?

One of the critical tasks in K-Means clustering is selecting the optimal number of clusters (k).
Several methods can be used:

1. The Elbow Method

The most common way to determine the best k is the elbow method. It involves plotting
the inertia (the sum of squared distances from each point to its assigned cluster centroid) for
different values of k. The point where the inertia starts to flatten out (forming an elbow) is
considered a good choice for k.

2. Silhouette Score

The silhouette score measures how similar each point is to its own cluster (cohesion) compared
to other clusters (separation). It ranges from -1 to 1:

• 1 indicates that the point is well inside its cluster.

• 0 means the point is on the boundary between two clusters.

• Negative values indicate the point may have been assigned to the wrong cluster.

3. Gap Statistic

The gap statistic compares the total within-cluster variation for different values of k with the
expected value under null reference distribution. The optimal number of clusters is where the
gap statistic is the largest.

Python Implementation of K-Means

Synthetic Data

Let’s implement K-Means clustering using Python with visualizations and explore how to
choose the best value of k using the elbow method.

3

import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.datasets import make_blobs
from sklearn.metrics import silhouette_score

For plotting purposes
import seaborn as sns
sns.set()

We’ll create a simple dataset with 4 distinct clusters for visualization.

Create a dataset with 4 clusters
X, y = make_blobs(n_samples=500, centers=4, cluster_std=0.60, random_state=0)

Visualize the dataset
plt.scatter(X[:, 0], X[:, 1], s=50)
plt.title('Dataset with 4 Clusters')
plt.gca().set_facecolor('#f4f4f4')
plt.gcf().patch.set_facecolor('#f4f4f4')
plt.show()

3 2 1 0 1 2 3 4

0

2

4

6

8

10
Dataset with 4 Clusters

We can now apply K-Means clustering with different values of k and observe how the clusters
are formed.

4

Fit KMeans with k=4 (since we know we generated 4 clusters)
kmeans = KMeans(n_clusters=4)
kmeans.fit(X)

Predict clusters
y_kmeans = kmeans.predict(X)

Plot the clustered data
plt.scatter(X[:, 0], X[:, 1], c=y_kmeans, s=50, cmap='viridis')

Plot the centroids
centers = kmeans.cluster_centers_
plt.scatter(centers[:, 0], centers[:, 1], c='red', s=200, alpha=0.75)
plt.title('K-Means Clustering with k=4')
plt.savefig('kmeans.png')
plt.gca().set_facecolor('#f4f4f4')
plt.gcf().patch.set_facecolor('#f4f4f4')
plt.show()

3 2 1 0 1 2 3 4

0

2

4

6

8

10
K-Means Clustering with k=4

To determine the optimal number of clusters, we’ll plot the inertia for different values of k
using the elbow method.

5

Test multiple k values
inertia = []
k_values = range(1, 10)

for k in k_values:
kmeans = KMeans(n_clusters=k)
kmeans.fit(X)
inertia.append(kmeans.inertia_)

Plot the inertia vs. k values
plt.plot(k_values, inertia, marker='o')
plt.title('Elbow Method: Choosing the Optimal k')
plt.xlabel('Number of Clusters (k)')
plt.ylabel('Inertia')
plt.gca().set_facecolor('#f4f4f4')
plt.gcf().patch.set_facecolor('#f4f4f4')
plt.show()

1 2 3 4 5 6 7 8 9
Number of Clusters (k)

0

1000

2000

3000

4000

In
er

tia

Elbow Method: Choosing the Optimal k

We see that the curve starts to flatten at k = 4, suggesting this is a good choice for the number
of clusters. Let’s also compute the silhouette score for different values of k to confirm our
choice.

6

sil_scores = []
for k in range(2, 10):

kmeans = KMeans(n_clusters=k)
kmeans.fit(X)
labels = kmeans.predict(X)
sil_scores.append(silhouette_score(X, labels))

Plot Silhouette Score vs. k
plt.plot(range(2, 10), sil_scores, marker='o')
plt.title('Silhouette Score for Different k Values')
plt.xlabel('Number of Clusters (k)')
plt.ylabel('Silhouette Score')
plt.gca().set_facecolor('#f4f4f4')
plt.gcf().patch.set_facecolor('#f4f4f4')
plt.show()

2 3 4 5 6 7 8 9
Number of Clusters (k)

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Si
lh

ou
et

te
 S

co
re

Silhouette Score for Different k Values

Real Data

Description:

7

This dataset contains information about customers of a shopping mall, including their annual
income, spending score, gender, and age.

Goal: Our goal is to segment customers into different groups based on their spending behavior
and income.

Columns:
- CustomerID: Unique identifier for each customer.
- Gender: The gender of the customer (Male or Female).
- Age: Age of the customer.
- Annual Income: Annual income of the customer in thousands of dollars.
- Spending Score: A score assigned by the mall based on customer behavior and spending
patterns.

Data Source: You can find the Mall Customer Segmentation data on Kaggle.

import pandas as pd
mall = pd.read_csv('Mall_Customers.csv')
mall.head()

CustomerID Gender Age Annual Income (k$) Spending Score (1-100)
0 1 Male 19 15 39
1 2 Male 21 15 81
2 3 Female 20 16 6
3 4 Female 23 16 77
4 5 Female 31 17 40

Data Information
print(mall.info())
print('\n')
Check for Missing Data
print(mall.isnull().sum())
print('\n')
Data Description
mall.rename(columns={'CustomerID':'ID','Annual Income (k$)':'Income','Spending Score (1-100)':'SpendingScore'},inplace=True)
cmall = mall.drop('ID',axis=1)
print(cmall.describe().loc[['mean','std','min','max']].T)

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 5 columns):
Column Non-Null Count Dtype

8

https://www.kaggle.com/datasets/vjchoudhary7/customer-segmentation-tutorial-in-python

--- ------ -------------- -----
0 CustomerID 200 non-null int64
1 Gender 200 non-null object
2 Age 200 non-null int64
3 Annual Income (k$) 200 non-null int64
4 Spending Score (1-100) 200 non-null int64

dtypes: int64(4), object(1)
memory usage: 7.9+ KB
None

CustomerID 0
Gender 0
Age 0
Annual Income (k$) 0
Spending Score (1-100) 0
dtype: int64

mean std min max
Age 38.85 13.969007 18.0 70.0
Income 60.56 26.264721 15.0 137.0
SpendingScore 50.20 25.823522 1.0 99.0

Pre-Process: Since our data contains categorical variable Gender, we need to encode this
column and scale the numerical features like Age, Annual Income, and Spending Score.

from sklearn.preprocessing import StandardScaler
X = mall[['Age','Income','SpendingScore']]
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
print(X_scaled[:5])

[[-1.42456879 -1.73899919 -0.43480148]
[-1.28103541 -1.73899919 1.19570407]
[-1.3528021 -1.70082976 -1.71591298]
[-1.13750203 -1.70082976 1.04041783]
[-0.56336851 -1.66266033 -0.39597992]]

Next we use the Elbow method to find the best k, the number of clusters

9

k_values = range(1,15)
inertia = []
for k in k_values:

kmeans = KMeans(n_clusters=k, random_state=123)
kmeans.fit(X_scaled)
inertia.append(kmeans.inertia_)

plt.plot(k_values,inertia, marker='o')
plt.title('Elbow method to find k')
plt.xlabel('Number of Clusters k')
plt.ylabel('Inertia')
plt.gca().set_facecolor('#f4f4f4')
plt.gcf().patch.set_facecolor('#f4f4f4')
plt.show()

2 4 6 8 10 12 14
Number of Clusters k

100

200

300

400

500

600

In
er

tia

Elbow method to find k

The elbow point in the plot (where the decrease in inertia starts to slow) helps determine the
optimal number of clusters. Let’s say we find that k = 5 looks like a reasonable choice from
the plot.

To further validate the choice of k, let’s compute the silhouette score for different cluster
numbers. A higher silhouette score indicates better-defined clusters

10

sil_scores = []
for k in range(2,15):

kmeans = KMeans(n_clusters=k, random_state=123)
labels = kmeans.fit_predict(X_scaled)
sil_scores.append(silhouette_score(X_scaled,labels))

plt.plot(range(2,15),sil_scores, marker='o')
plt.title('Silhoutte method to find k')
plt.xlabel('Number of Clusters k')
plt.ylabel('Silhoutte Score')
plt.gca().set_facecolor('#f4f4f4')
plt.gcf().patch.set_facecolor('#f4f4f4')
plt.show()

2 4 6 8 10 12 14
Number of Clusters k

0.34

0.36

0.38

0.40

0.42

Si
lh

ou
tte

 S
co

re

Silhoutte method to find k

Next, we apply k = 5 clusters

plt.figure(figsize=(9.5,6))
kmeans = KMeans(n_clusters=5, random_state=123)
mall['Cluster'] = kmeans.fit_predict(X_scaled)
print(mall.head())
sns.scatterplot(

x='Income', y='SpendingScore', hue='Cluster',
data=mall, palette='viridis', s=100, alpha=0.7

11

)
plt.title('Customer Segmentation Based on Income and Spending Score')
plt.legend()
plt.gca().set_facecolor('#f4f4f4')
plt.gcf().patch.set_facecolor('#f4f4f4')
plt.show()

ID Gender Age Income SpendingScore Cluster
0 1 Male 19 15 39 2
1 2 Male 21 15 81 2
2 3 Female 20 16 6 4
3 4 Female 23 16 77 2
4 5 Female 31 17 40 2

20 40 60 80 100 120 140
Income

0

20

40

60

80

100

Sp
en

di
ng

Sc
or

e

Customer Segmentation Based on Income and Spending Score

0
1
2
3
4

Analyze the segments

cluster_summary = mall.drop(columns=['Gender','ID']).groupby('Cluster').mean()
print(cluster_summary)

12

Age Income SpendingScore
Cluster
0 32.875000 86.100000 81.525000
1 55.638298 54.382979 48.851064
2 25.185185 41.092593 62.240741
3 39.871795 86.102564 19.358974
4 46.250000 26.750000 18.350000

Now say we have two new customers

new_customer = {'ID':[201,202],'Gender':['Male','Female'],'Age': [30,50],'Income':[40,70],'SpendingScore':[70,20]}
new_customer = pd.DataFrame(new_customer)
print(new_customer)

ID Gender Age Income SpendingScore
0 201 Male 30 40 70
1 202 Female 50 70 20

We would like to know in which cluster they belong.

X_new = new_customer[['Age', 'Income','SpendingScore']]
X_new_sc = scaler.transform(X_new)
cluster_labels = kmeans.predict(X_new_sc)
print(cluster_labels)

[2 3]

K-Means is a powerful and widely used clustering algorithm, but it has limitations, such as
assuming spherical clusters of equal sizes.

Limitations of K-Means Clustering

While K-Means is a widely used clustering algorithm due to its simplicity and scalability, it
has several notable limitations:

13

1. Assumption of Spherical Clusters

K-Means assumes that clusters are spherical and have roughly the same size. This assumption
may not hold true in real-world datasets, where clusters may have different shapes and densities.
For example, if clusters are elongated or irregularly shaped, K-Means may not perform well.

• Solution: Use algorithms like DBSCAN (Density-Based Spatial Clustering of Applica-
tions with Noise) or Spectral Clustering, which do not assume any specific shape for
the clusters.

2. Sensitivity to Initialization

K-Means is sensitive to the initial selection of centroids. Different initializations can lead to
different final clusters, and in some cases, the algorithm may converge to suboptimal solutions.
To address this, the algorithm is often run multiple times with different initializations (e.g.,
using the k-means++ initialization method).

• Solution: Use the k-means++ initialization, which ensures that centroids are chosen in a
way that increases the likelihood of converging to an optimal solution.

3. Needs to Specify k in Advance

One of the main limitations is that K-Means requires the number of clusters (k) to be specified
in advance. This can be a challenge when the number of clusters is unknown, and choosing the
wrong k can lead to poor clustering results.

• Solution: Use the Elbow Method, Silhouette Score, or the Gap Statistic to
estimate the best value for k.

4. Outliers and Noise Sensitivity

K-Means is highly sensitive to outliers, as they can significantly affect the position of centroids.
An outlier will either form its own cluster or distort the positions of nearby centroids, leading
to incorrect clustering.

• Solution: Preprocess your data by removing outliers or use clustering methods like
DBSCAN, which can handle outliers more effectively by considering them as noise.

14

5. Equal Cluster Size Assumption

The algorithm tends to assign roughly equal-sized clusters because it minimizes variance. This
can be a problem if clusters in your data have highly varying sizes. Small clusters might be
absorbed into larger ones.

• Solution: Use Hierarchical Clustering, which can naturally handle different cluster
sizes.

6. Non-Convex Shapes

K-Means struggles with data where clusters have non-convex shapes, such as two overlapping
rings or crescent shapes. It partitions the space into Voronoi cells, which are convex, leading to
poor clustering results in non-convex structures.

• Solution: Algorithms like Spectral Clustering or Gaussian Mixture Models
(GMM) can better handle non-convex clusters.

References

1. K-Means Algorithm:

• MacQueen, J. B. (1967). “Some Methods for Classification and Analysis of Multivari-
ate Observations”. Proceedings of the Fifth Berkeley Symposium on Mathematical
Statistics and Probability, Volume 1: Statistics.

• Hartigan, J. A., & Wong, M. A. (1979). “Algorithm AS 136: A K-means clustering
algorithm”. Journal of the Royal Statistical Society. Series C (Applied Statistics),
28(1), 100-108.

2. Choosing k (Elbow Method & Silhouette Score):

• Rousseeuw, P. J. (1987). “Silhouettes: A graphical aid to the interpretation and
validation of cluster analysis”. Journal of Computational and Applied Mathematics,
20, 53-65.

3. Inertia and the Elbow Method:

• Tibshirani, R., Walther, G., & Hastie, T. (2001). “Estimating the number of clusters
in a dataset via the gap statistic”. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 63(2), 411-423.

15

Share on

�

ï

�

You may also like

16

	Introduction
	Mathematics Behind K-Means
	Objective Function (Inertia)
	How to Choose the Best k Value?
	1. The Elbow Method
	2. Silhouette Score
	3. Gap Statistic

	Python Implementation of K-Means
	Synthetic Data
	Real Data

	Limitations of K-Means Clustering
	1. Assumption of Spherical Clusters
	2. Sensitivity to Initialization
	3. Needs to Specify k in Advance
	4. Outliers and Noise Sensitivity
	5. Equal Cluster Size Assumption
	6. Non-Convex Shapes

	References

