{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Data collection through Webscraping\n", "\n", "Rafiq Islam \n", "2024-08-14\n", "\n", "## Introduction\n", "\n", "Collecting data and preparing it for a project is one of the most\n", "important tasks in any data science or machine learning project. There\n", "are many sources from where we can collect data for a project, such as\n", "\n", "- Connecting to a SQL database server \n", "- Data Source Websites such as\n", " Kaggle,\n", " Google Dataset Search,\n", " UCI\n", " Machine Learning Repo etc \n", "- Web Scraping with Beautiful Soup\n", "- Using Python API\n", "\n", "## Data Source Websites\n", "\n", "Data source websites mainly falls into two categories such as data\n", "repositories and data science competitions. There are many such\n", "websites.\n", "\n", "1. The\n", " UCI\n", " Machine Learning Repository \n", "2. The Harvard\n", " Dataverse\n", "3. The\n", " Mendeley Data\n", " Repository\n", "4. The 538\n", "5. The\n", " New Yourk Times \n", "6. The International Data Analysis Olympiad\n", "7. Kaggle Competition\n", "\n", "Example of collecting data from\n", "UCI\n", "Machine Learning Repository" ], "id": "ca293291-0509-4576-b100-316c308b5ec9" }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "{'uci_id': 53, 'name': 'Iris', 'repository_url': 'https://archive.ics.uci.edu/dataset/53/iris', 'data_url': 'https://archive.ics.uci.edu/static/public/53/data.csv', 'abstract': 'A small classic dataset from Fisher, 1936. One of the earliest known datasets used for evaluating classification methods.\\n', 'area': 'Biology', 'tasks': ['Classification'], 'characteristics': ['Tabular'], 'num_instances': 150, 'num_features': 4, 'feature_types': ['Real'], 'demographics': [], 'target_col': ['class'], 'index_col': None, 'has_missing_values': 'no', 'missing_values_symbol': None, 'year_of_dataset_creation': 1936, 'last_updated': 'Tue Sep 12 2023', 'dataset_doi': '10.24432/C56C76', 'creators': ['R. A. Fisher'], 'intro_paper': {'ID': 191, 'type': 'NATIVE', 'title': 'The Iris data set: In search of the source of virginica', 'authors': 'A. Unwin, K. Kleinman', 'venue': 'Significance, 2021', 'year': 2021, 'journal': 'Significance, 2021', 'DOI': '1740-9713.01589', 'URL': 'https://www.semanticscholar.org/paper/4599862ea877863669a6a8e63a3c707a787d5d7e', 'sha': None, 'corpus': None, 'arxiv': None, 'mag': None, 'acl': None, 'pmid': None, 'pmcid': None}, 'additional_info': {'summary': 'This is one of the earliest datasets used in the literature on classification methods and widely used in statistics and machine learning. The data set contains 3 classes of 50 instances each, where each class refers to a type of iris plant. One class is linearly separable from the other 2; the latter are not linearly separable from each other.\\n\\nPredicted attribute: class of iris plant.\\n\\nThis is an exceedingly simple domain.\\n\\nThis data differs from the data presented in Fishers article (identified by Steve Chadwick, spchadwick@espeedaz.net ). The 35th sample should be: 4.9,3.1,1.5,0.2,\"Iris-setosa\" where the error is in the fourth feature. The 38th sample: 4.9,3.6,1.4,0.1,\"Iris-setosa\" where the errors are in the second and third features. ', 'purpose': 'N/A', 'funded_by': None, 'instances_represent': 'Each instance is a plant', 'recommended_data_splits': None, 'sensitive_data': None, 'preprocessing_description': None, 'variable_info': None, 'citation': None}}\n", " name role type demographic \\\n", "0 sepal length Feature Continuous None \n", "1 sepal width Feature Continuous None \n", "2 petal length Feature Continuous None \n", "3 petal width Feature Continuous None \n", "4 class Target Categorical None \n", "\n", " description units missing_values \n", "0 None cm no \n", "1 None cm no \n", "2 None cm no \n", "3 None cm no \n", "4 class of iris plant: Iris Setosa, Iris Versico... None no " ] } ], "source": [ "from ucimlrepo import fetch_ucirepo \n", " \n", "# fetch dataset \n", "iris = fetch_ucirepo(id=53) \n", " \n", "# data (as pandas dataframes) \n", "X = iris.data.features \n", "y = iris.data.targets \n", " \n", "# metadata \n", "print(iris.metadata) \n", " \n", "# variable information \n", "print(iris.variables) " ], "id": "e4e39c21" }, { "cell_type": "markdown", "metadata": {}, "source": [ "you may need to install the\n", "UCI\n", "Machine Learning Repository as a package using pip.\n", "\n", " pip install ucimlrepo" ], "id": "bb1d0e6f-40b3-47f9-9361-d5636db65579" }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "output_type": "display_data", "metadata": {}, "data": { "text/html": [ "\n", "" ] } } ], "source": [ "X.head()" ], "id": "d22cdb63" }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Web Scraping\n", "\n", "We scrapping is another way of collecting the data for the research if\n", "the data is not available in any repositiory. We can collect the data\n", "from a website using a library called `BeautifulSoup` if the website has\n", "permision for other people to collect data from the website." ], "id": "3ddcf85c-5639-4494-9957-403c1f610168" }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "import bs4 # library for BeautifulSoup\n", "from bs4 import BeautifulSoup # import the BeautifulSoup object\n", "import pandas as pd\n", "import numpy as np\n", "import seaborn as sns\n", "import matplotlib.pyplot as plt\n", "from seaborn import set_style\n", "set_style(\"whitegrid\")" ], "id": "cbea31aa" }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now let’s make a html object using `BeautifulSoup`. Let’s say we have a\n", "html website that looks like below" ], "id": "3dfb3f6a-0b0f-4ff5-a278-b97a0fa7559d" }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "html_doc=\"\"\"\n", "\n", "\n", "\n", " My Dummy HTML Document\n", "\n", "\n", "

Welcome to My Dummy HTML Document

\n", "

This is a paragraph in my dummy HTML document.

\n", " Blog \n", " Research \n", "\n", "\n", "\"\"\"" ], "id": "a77b005b" }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now we want to grab information from the dummy html documnet above." ], "id": "a23e733d-95af-42f9-b69b-db3e61086f94" }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "soup=BeautifulSoup(html_doc, features='html.parser')" ], "id": "8936be00" }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now that we have the object `soup` we can walk through each elements in\n", "this object. For example, if we want to grab the title element," ], "id": "90cf2ff4-a785-485d-9235-fe8281201490" }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "output_type": "display_data", "metadata": {}, "data": { "text/plain": [ "My Dummy HTML Document" ] } } ], "source": [ "soup.html.head.title" ], "id": "7d6496b7" }, { "cell_type": "markdown", "metadata": {}, "source": [ "Since the html document has only one title, therefore, we can simply use\n", "the following command" ], "id": "6d6f5d56-f736-403e-94ea-e24f12cf4cfb" }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "output_type": "display_data", "metadata": {}, "data": { "text/plain": [ "My Dummy HTML Document" ] } } ], "source": [ "soup.title " ], "id": "d963d69d" }, { "cell_type": "markdown", "metadata": {}, "source": [ "or this command to get the text only" ], "id": "1b735eb1-9b8f-453f-86e6-c1f41de204e3" }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "output_type": "display_data", "metadata": {}, "data": { "text/plain": [ "'My Dummy HTML Document'" ] } } ], "source": [ "soup.title.text" ], "id": "f935ba93" }, { "cell_type": "markdown", "metadata": {}, "source": [ "This `soup` object is like a family tree. It has parents, children,\n", "greatgrand parents etc." ], "id": "687e837c-7729-48cf-8d43-a10e0d66f67f" }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "output_type": "display_data", "metadata": {}, "data": { "text/plain": [ "\n", "My Dummy HTML Document\n", "" ] } } ], "source": [ "soup.title.parent" ], "id": "b267844e" }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now to grab an attribute from the `soup` object we can use" ], "id": "52707ecc-ad79-4311-af70-170b6bca2889" }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "output_type": "display_data", "metadata": {}, "data": { "text/plain": [ " Blog " ] } } ], "source": [ "soup.a" ], "id": "213d21ed" }, { "cell_type": "markdown", "metadata": {}, "source": [ "or any particular thing from the attribute" ], "id": "114c0cd2-407a-4734-a13e-5b63e5057ea7" }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "output_type": "display_data", "metadata": {}, "data": { "text/plain": [ "['blog']" ] } } ], "source": [ "soup.a['class']" ], "id": "1c303bf9" }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can also find multiple attribute of the same kind" ], "id": "29caa1b7-a663-4c93-84d0-34e68bed3ec8" }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "output_type": "display_data", "metadata": {}, "data": { "text/plain": [ "[ Blog ,\n", " Research ]" ] } } ], "source": [ "soup.findAll('a')" ], "id": "723e8b21" }, { "cell_type": "markdown", "metadata": {}, "source": [ "Then if we want any particular object from all `a` attribute" ], "id": "e6182286-3ef9-480a-84ad-2ca8837697bc" }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "output_type": "display_data", "metadata": {}, "data": { "text/plain": [ "'blog'" ] } } ], "source": [ "soup.findAll('a')[0]['id']" ], "id": "726f6dc2" }, { "cell_type": "markdown", "metadata": {}, "source": [ "For any `p` tag" ], "id": "f0347b8e-5159-4320-bc61-92e6a0d0095d" }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "output_type": "display_data", "metadata": {}, "data": { "text/plain": [ "'This is a paragraph in my dummy HTML document.'" ] } } ], "source": [ "soup.p.text " ], "id": "436548e6" }, { "cell_type": "markdown", "metadata": {}, "source": [ "Similarly, if we want to grab all the `href`s from the `a` tags" ], "id": "ae61a2d7-3b5c-4223-8f8f-4414a4b57abf" }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "output_type": "display_data", "metadata": {}, "data": { "text/plain": [ "['https://mrislambd.github.io/blog', 'htpps://mrislambd.github.io/research']" ] } } ], "source": [ "[h['href'] for h in soup.findAll('a')]" ], "id": "db9786c2" }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example of Webscraping from a real website\n", "\n", "In this example we want to obtain some information from\n", "NVIDIA Graduate Fellowship Program. Before accessing\n", "this website we need to know if we have permision to access their data\n", "through webscraping." ], "id": "842dc31b-6ae7-42cf-92ad-266bf6188c0c" }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "output_type": "display_data", "metadata": {}, "data": { "text/plain": [ "200" ] } } ], "source": [ "import requests\n", "response = requests.get(url=\"https://research.nvidia.com/graduate-fellowships/archive\")\n", "response.status_code" ], "id": "e0bc5246" }, { "cell_type": "markdown", "metadata": {}, "source": [ "The `status_code` $200$ ensures that we have enough permision to acccess\n", "their website data. However, if we obtain `status_code` of $403, 400,$\n", "or $500$ then we do not permision or a `bad request`. For more about the\n", "status codes\n", "click here." ], "id": "b6699a0c-661d-4399-9125-b9ae1fd87f66" }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [], "source": [ "soup = BeautifulSoup(response.text, 'html.parser')" ], "id": "3a96bf11" }, { "cell_type": "markdown", "metadata": {}, "source": [ "We want to make an analysis based on the institution of the past\n", "graduate fellows. Insepecting the elements in\n", "this website we see that the `div` those have\n", "`class=\"archive-group\"` contains the information of the past graduate\n", "fellows." ], "id": "2485b948-6043-4726-ae37-1f16db13f427" }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [], "source": [ "pf = soup.find_all(\"div\", class_=\"archive-group\")" ], "id": "7143f805" }, { "cell_type": "markdown", "metadata": {}, "source": [ "and the first element of this `pf` contains the information of the\n", "graduate fellows in the year of 2021." ], "id": "fd0a7af9-cc13-40cb-98ce-d134a9ef65c9" }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "output_type": "display_data", "metadata": {}, "data": { "text/plain": [ "
\n", "

2021 Grad Fellows

\n", "
Alexander Sax
University of California, Berkeley
\n", "
Hanrui Wang
Massachusetts Institute of Technology
\n", "
Ji Lin
Massachusetts Institute of Technology
\n", "
Krishna Murthy Jatavallabhula
University of Montreal
\n", "
Rohan Sawhney
Carnegie Mellon University
\n", "
Sana Damani
Georgia Institute of Technology
\n", "
Thierry Tambe
Harvard University
\n", "
Ye Yuan
Carnegie Mellon University
\n", "
Yunzhu Li
Massachusetts Institute of Technology
\n", "
Zhiqin Chen
Simon Fraser University
\n", "
" ] } } ], "source": [ "pf[0]" ], "id": "f31889d2" }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now let’s make a `pandas` dataframe using the information in this page.\n", "We can make an use of the output from the above chunk. To grab the year,\n", "we see that `archive-group__title` class with a `h4` tag contains the\n", "year for all years. With `strip=True`, the text is cleaned by removing\n", "extra whitespace from the beginning and end. We need the first element\n", "so a `split()[0]` will do the job. Then we make another group called\n", "`fellows` that contains the fellows in a certian year by using the `div`\n", "and `class\"views-row\"`. Once the new group created, we then iterate\n", "through this group to extract their names and corresponding\n", "institutions." ], "id": "b405958f-103a-4129-a53d-19378d5d2216" }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "output_type": "display_data", "metadata": {}, "data": { "text/html": [ "\n", "" ] } } ], "source": [ "data=[]\n", "\n", "for group in pf:\n", " year = group.find(\n", " \"h4\",class_=\"archive-group__title\"\n", " ).get_text(strip=True).split()[0]\n", "\n", " fellows = group.find_all(\"div\", class_=\"views-row\")\n", " for fellow in fellows:\n", " name = fellow.find(\n", " \"div\", class_=\"views-field-title\"\n", " ).get_text(strip=True) \n", " institute = fellow.find(\n", " \"div\", class_=\"views-field-field-grad-fellow-institution\"\n", " ).get_text(strip=True)\n", "\n", " data.append({\"Name\": name, \"Year\": year, \"Institute\": institute})\n", "\n", "data=pd.DataFrame(data)\n", "data.head()" ], "id": "e5197ff0" }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now let’s perform some Exploratory Data Analysis (EDA). First, we\n", "analyze the unique values and distributions." ], "id": "e63fddd1-e19d-4fa5-ab92-1a6df2c272cd" }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Year 2006 2018 2017 2007 2013 2012 2011 2008 2019 2021 2003 2009 \\\n", "Count 12 11 11 11 11 11 11 10 10 10 10 10 \n", "\n", "Year 2010 2005 2015 2004 2016 2002 2020 2014 \n", "Count 9 8 7 7 6 6 5 5 " ] } ], "source": [ "# Count the number of fellows each year\n", "year_counts = data['Year'].value_counts().sort_values(ascending=False)\n", "# Create a DataFrame where years are columns and counts are values in the next row\n", "year_data = {\n", " 'Year': year_counts.index,\n", " 'Count': year_counts.values\n", "}\n", "# Create the DataFrame\n", "year_data_counts = pd.DataFrame(year_data)\n", "\n", "# Transpose the DataFrame and reset index to get years as columns\n", "year_data_counts = year_data_counts.set_index('Year').T\n", "\n", "# Display the DataFrame\n", "print(year_data_counts)" ], "id": "915a622a" }, { "cell_type": "markdown", "metadata": {}, "source": [ "Next we see that most represented universities" ], "id": "ff88ff25-3eef-4162-a53d-b0fc23acfb4e" }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Institute\n", "Stanford University 24\n", "Massachusetts Institute of Technology 15\n", "University of California, Berkeley 14\n", "Carnegie Mellon University 13\n", "University of Utah 10\n", "University of Washington 9\n", "University of Illinois, Urbana-Champaign 9\n", "University of California, Davis 8\n", "Georgia Institute of Technology 8\n", "University of North Carolina, Chapel Hill 6\n", "Name: count, dtype: int64" ] } ], "source": [ "university_counts = data['Institute'].value_counts()\n", "print(university_counts.head(10)) # Display the top 10 universities" ], "id": "3cc450ba" }, { "cell_type": "markdown", "metadata": {}, "source": [ "To visualize the award distributions per year," ], "id": "ffce1e26-7abe-4897-8110-9e3a36c038fa" }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "output_type": "display_data", "metadata": {}, "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAt0AAAHBCAYAAAC1ywePAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90\nbGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA7E\nAAAOxAGVKw4bAAA8TElEQVR4nO3dfZyM9eL/8feM2bWLXTdtZSUpWndJ1t1xk9xkndzLISUSCpVW\nS51OJVKdpITKTTgoTvaEOpFy5KFDyclhHXEobXIX6kvZtdi1Y+b3h9/OMXbX7rKfaz621/Px2EfN\ndc1c13uuufbjPddcc60rIyPDLwAAAADGuEMdAAAAACjpKN0AAACAYZRuAAAAwDBKNwAAAGAYpRsA\nAAAwjNINAAAAGEbpBgAAAAyjdAMAAACGUboBAAAAwyjdAIxatmyZ4uPj1bp1a6WnpwfN83q9io+P\n18yZMx3PNXPmTMXHx8vr9Tq+7qLw+Xx65ZVXlJCQoEaNGikpKSnf+3bu3Fnx8fG5fgYNGlSkdT7w\nwAN64IEHArc3bdqk+Ph4bdq06aKfh2k5+1nOT6tWrXTXXXcpOTnZ2Gt88uRJdenSRYMGDZLfn/uP\nO7/11ltq2rSpduzYYWT9AC4vnlAHAPDbkJGRofnz5+vRRx8NdZTLyurVq7Vo0SIlJSWpfv36qlCh\nwgXv37x5cw0dOjRoWrly5QwmtMvEiRN11VVX6cSJE1q9erUmTpyoX3/9VcOHDy/2dZUpU0ZjxozR\n8OHD9d577+muu+4KzNu9e7fmzp2r/v37q27dusW+bgCXH0o3AEf87ne/U3Jysvr166crrrgi1HEc\ncfr0aYWHh1/SMn744QdJ0j333CO3u+APJytUqKCbb775ktZ5OYuLi1O1atUknX0Dsn//fi1atOiS\nS3d+r2WzZs3Uo0cPvfnmm7rttttUuXJl+Xw+Pffcc7rmmmtyvQEyoTj2MwDmcXoJAEcMGTJEkjRn\nzpwL3i/ntI/zjR07Vp07dw7cPnjwoOLj47VkyRK98cYb6tChg1q1aqWnn35ap06d0r59+/TQQw+p\nZcuW6tatm5YvX57n+n744Qc9+OCDatGihRISEjRjxgz5fL6g+/z666968cUX1bFjRzVr1kx33nmn\nli5dGnSfnNMbNm/erCeeeEKtW7fWgAEDLvhc169fr/vuu0/NmzdX69atlZSUpD179gTmd+7cWW+9\n9ZYkqXHjxoqPj9eyZcsuuMyCbN68WUOHDlWrVq3UokULPfTQQ0pNTS3ycvx+vxYuXKiePXuqadOm\nSkhI0IQJE5SRkRG4T2JiooYNGxb0mHbt2qlZs2Y6depUYPrTTz+te++9N3D7k08+0d13362WLVvq\n1ltvVZ8+fbRkyZKLer5169ZVRkaGfvnlF0nSrl27NHLkSN12221q3ry57r//fqWkpAQ9ZuzYsfr9\n73+vrVu3auDAgWrevLmmTp2a7zoee+wxlS1bVn/+858lScnJyfrvf/+rsWPHKjw8XKdOndLUqVPV\npUsXNW3aVF26dNGcOXOC9rOsrCy9+uqr6t27t1q2bKkOHTooMTEx8KYrx8XsZwDswJFuAI6IiYnR\nXXfdpXfffVf9+/dXlSpVimW5c+fOVePGjfXcc89p9+7dev311+V2u/Xtt9+qZ8+eGjBggBYvXqxx\n48apbt26qlGjRtDjR40apW7duun+++/Xhg0bNHv2bLlcrkBZzMjI0KBBg5SVlaWhQ4fqmmuu0Zdf\nfqmXXnpJ2dnZ6tu3b9DynnnmGXXs2FGvvPLKBc8lXr9+vRITE9WkSRNNmDBBJ0+e1IwZMzRo0CAl\nJyfrqquu0qRJk7Ro0SItX75c8+fPlyRde+21BW6T89dbqlQpuVwuff7550pKSlKrVq30wgsvSJLm\nz5+vwYMH629/+5sqV65c4LJzvPnmm5o3b5769Omj1q1ba/fu3ZoxY4Z27dqlOXPmyO12q0mTJpo+\nfXrgSOx3332ntLQ0hYWF6T//+Y+aN28uSfr3v/8deEO1ZcsWPfPMM+rbt69Gjhwpn8+nPXv2BJX5\nojh48KBKlSqlyMhI7dy5U4MHD1bt2rU1ZswYRUREaMmSJRo+fLjmzZsXdBpIRkaG/vSnP2nAgAF6\n5JFHVLp06XzXERUVpaeeekojR47UX/7yF82dO1d9+/ZVgwYN5PV69fDDD+uHH37QkCFDVLNmTW3b\ntk1z5sxRenp64Bz906dP6+TJkxoyZIhiYmKUlpamxYsXa+DAgVq6dKliYmKC1lnY/QyAPSjdAByT\nUyBmzZqlcePGFcsyq1atqvHjx0uSWrRooS1btmjFihV6/vnnA0Wubt26WrdunVavXp2rdPfs2VP3\n33+/pLOnI5w4cUILFy5Uv379FBUVpUWLFunQoUN67733AqctNGvWTBkZGZo1a5b+8Ic/yOP531Da\nvn17jRw5ssDc06dP1zXXXKM33ngj8Pibb75ZPXv21IIFCzRq1CjVrl1bV111VWBeYXzyySf65JNP\ngqbNmDFDzZo10yuvvKL4+HhNnjw5MK9x48bq1q2bFixYoMcff7xQ60hLS9PChQvVtWtXPfnkk5LO\nbvuKFStqzJgx+vzzz3XbbbepcePGyszM1LZt29SoUSP9+9//Vo0aNXTFFVdo06ZNat68uX744Qcd\nOXJEjRs3liRt27ZNUVFRQVlyynlh+Hw+eb1enTx5UqtWrdKaNWvUunVrRUZGasqUKapcubLeeust\nhYWFBZbdu3dvzZkzR6+99lpgOSdPntQLL7ygNm3aFGq9rVu31h133KFp06apatWqevjhhyVJK1eu\n1H/+8x/Nnj1bjRo1knR2/5GkWbNmaeDAgapUqZKioqL07LPPBpZ35swZNW/eXB06dNDKlSuDPgmQ\nCr+fAbAHp5cAcEz58uXVv39/rVixIug0ikvRsmXLoNvVq1eXdLYE5oiOjlbFihX1008/5Xp8hw4d\ngm4nJCTo5MmTgVMuvvzyS910002qUqWKvF5v4Kd58+Y6duyYdu/eHfT4tm3bFpj51KlT+uabb5SQ\nkBBU2K+55ho1aNBAmzdvLnAZ+WnZsqUWLlwY9HPTTTdp3759OnDggO64446g5xEREaH69etry5Yt\nhV7Htm3blJ2drU6dOgVN79ixozweTyB/XFycypcvr40bN0o6e0S7SZMmatKkif79738Hpnk8HjVs\n2FCSVK9ePaWnp+vpp5/WunXrdPz48SI9/zvvvFNNmzZVmzZtNGHCBN1xxx0aO3asMjMzlZKSog4d\nOsjlcgWev9/vV7NmzXKdYuLxeHTrrbcWad0PPvigJOnee+9VZGSkJGnDhg2KjY0NHPU+d//xer3a\ntm1b4PGrVq3SgAED1Lp1azVp0kQtW7bUyZMntXfv3lzrKsx+BsAuHOkG4Kh+/fopOTlZM2bM0Isv\nvnjJy4uOjg66nXMEMyoqKtf0rKysXI8//0udObd//vlnSdIvv/yi/fv3q2nTpnmuPy0tLej2lVde\nWWDm9PR0+f3+XKcM5Kz/0KFDBS4jP9HR0XleLeO7776TJI0fPz7wycC5inJqSc5zPj+/x+NR+fLl\nA/PdbnfgUoNnzpxRSkqKevTooUqVKmnGjBnKyMjQpk2bVK9ePZUpU0aS1KhRI02cOFHJyckaPXq0\nJCk+Pl5JSUmKi4srMNukSZN09dVXq0yZMoqNjQ2cFvLzzz/rzJkzmj17tmbPnp3nY30+X+DLqhUr\nVlSpUqUKvU2k/+17Of+Vzu4/hw4dynf/OXbsmCRp7dq1evLJJ9W1a1c9+OCDqlChgtxut0aMGKHT\np0/nelxh9jMAdqF0A3BUmTJldP/992vy5Mm67777cs3PKUnZ2dlB5SWnnBS3o0ePqmrVqkG3JQVO\n6yhfvrwqVaqU76kX1113XZHXGR0dLZfLFVjX+XnOfyNRHMqXLy9JGjFiROD0hnOde8S9sMs6cuRI\n0Ok6Xq9XaWlpgfmS1KRJE02ePFn/+c9/dOrUKTVq1EiRkZGKiIjQ5s2btWnTJvXq1Sto+bfffrtu\nv/12nTx5Ups2bdLrr7+uRx55RCtXrizwCi41atQInAZ0rqioKLndbvXp00ddunTJ87HnLtvlchW8\nIQqhfPnyuuaaa/Tyyy/nOT82NlbS2aPc1157rZ577rnAvOzs7FzXtgdw+aJ0A3Bcnz599Ne//lXT\npk3LNS+nhKSmpqpOnTqSpOPHj+vrr78OHA0tTp9++mngnG7pbPkpU6aMatasKensaSo5XzKsVKlS\nsawzMjJSderU0erVqzV06NDAEdWDBw9q69atub6cWRyqV6+uKlWq6Pvvvw96vhejfv36CgsL06pV\nq4IK/KpVq+T1egPnLktnS3d2drZmz56tWrVqBT6BaNiwoRYtWqRjx44Fzuc+X5kyZdS6dWv9+OOP\neuWVV5SWlqaKFSteVObIyEg1bNhQu3btUu3atQt1+cXi0KJFC61Zs0aRkZG6/vrr871fZmZmriPr\nK1as0JkzZ0xHBOAQSjcAx4WHh+uBBx4IXEHjXC1btlS5cuX0/PPPa9iwYcrOztbbb78dOEe2uH3w\nwQfy+XyqV6+eNmzYoA8++EBDhw4NlMN+/fpp1apVGjx4sPr166frrrtOp06d0p49e7Rly5agLyUW\nxfDhw5WYmKjExET17t1bp06d0syZM1WuXDn179+/OJ+ipLNHbp988kklJSUpOztbCQkJqlChgo4e\nPaqtW7cqNjY215f18lO+fHnde++9mjdvniIiItSqVSv98MMPmj59um655Zagc6Fr1KihSpUqaePG\njUGXtss5Ah4eHq5bbrklMH3GjBk6evSomjRpopiYGP38889atGiRatWqddGFO0dSUpKGDBmihx9+\nWD169FBMTIyOHTumnTt3yufzGfnDTXfccYeWLVumYcOGqX///rrxxhvl9Xq1f/9+rVu3TpMmTVJk\nZKSaN2+uzz77TK+++qpuvfVW7dy5U8nJyblOkwJw+aJ0AwiJbt266Z133tG+ffuCpkdFRWnq1Kma\nNGmSnnzySV111VV64IEHtHHjRiN/hvy1117TxIkTNWfOHJUrV05DhgwJ+hPoUVFRmj9/vmbNmqX5\n8+fr559/VlRUlK677jq1b9/+otfbsmVLTZ06VbNmzdKTTz6psLAwNWrUSImJicbO123VqpVmz56t\nv/zlLxo/fryysrJ0xRVXqH79+kpISCjSsh555BFVrFhRS5cu1eLFi1WhQgV17txZI0aMyHUUuVGj\nRvr000/VpEmTwLSc/69fv37Q5fhuuukmLVq0SJMmTVJaWpoqVaqk3/3ud3rooYcu4ZmfVadOHS1Y\nsECzZs3SxIkTlZGRoYoVK6p27dr6wx/+cMnLz0tYWJimTZumefPm6f3339ePP/6oyMhIVa1aVa1a\ntQqcQnXnnXfqp59+0ocffqj3339fdevW1ZQpUzRq1CgjuQA4z5WRkeEPdQgAAACgJOOSgQAAAIBh\nlG4AAADAMEo3AAAAYBilGwAAADCM0g0AAAAYViIvGejz+eTz+eRyuYrtr4oBAAAA5/P7/fL7/XK7\n3Rf8w1sltnSnpqaGOgYAAAB+I2rWrPnbK905R7cLevIAAADApcg52FvQ2RUlunQXdJgfAAAAKA4F\nlW4aKQAAAGAYpRsAAAAwjNINAAAAGEbpBgAAAAyjdAMAAACGUboBAAAAwyjdAAAAgGGUbgAAAMAw\nSjcAAABgGKUbAAAAMIzSDQAAABjmCcVK//GPf+hvf/ubvvvuO504cUIbN26Ux3M2yrZt2zRnzhzt\n2LFDmZmZio2NVb9+/dS9e/dQRAUAAAAuWUhKd1RUlPr06aPMzEyNHz8+aF5aWprat2+vsWPHqmLF\nitq0aZOSkpIUHR2ttm3bhiIuAAAAcElCUrpbtGghSdq0aVOuea1atQq63aRJEzVp0kSbNm2idAMA\nAOCyFJLSXRQZGRnavn272rRpU+TH+ny+4g+EEsXlcsnlchlfj9/vl9/vN74eAADgrML2TatLd3Z2\ntp588klVr15dnTp1KvLjU1NTDaRCSREWFqY6deoqLMz8r0F2tlc7d+5Qdna28XUBAAD7WFu6T506\npdGjRys7O1tTpkwJfNGyKGrWrCm3mwu0IG9ut1thYR4lzf9M+4+kG1vPtTHRem1gW9WoUYNPXwAA\nKGF8Pl+hDvRaWbrT09P16KOPKjo6Wq+99ppKly59Uctxu92UbuQr57SS/UfStfunNEfWx/4IAMBv\nU0gawJkzZ5SVlRX4qD07O1tZWVny+Xw6cuSIhgwZoquvvlqTJk266MINAAAA2CIkR7pXrFihcePG\nBW63bNlSkjRr1ixt3rxZqampOnDgQNCXJxs2bKg333zT4aQAAADApQtJ6e7WrZu6deuW57zGjRtr\n6NChDicCAAAAzOEEUwAAAMAwSjcAAABgGKUbAAAAMIzSDQAAABhG6QYAAAAMo3QDAAAAhlG6AQAA\nAMMo3QAAAIBhlG4AAADAMEo3AAAAYBilGwAAADCM0g0AAAAYRukGAAAADKN0AwAAAIZRugEAAADD\nKN0AAACAYZRuAAAAwDBKNwAAAGAYpRsAAAAwjNINAAAAGEbpBgAAAAyjdAMAAACGeUIdAPitc7lc\njq7P7/c7uj5cHFv2Cydz2JDhQjlgFxv2Cxsy4PJB6QZCyOVyKbx0hDylnPnQyXvGp9NZmQzclrNl\nv3Ayhw0ZLpQDdrFhv7AhAy4vlG4gxDyl3Eqa/5n2H0k3up5rY6L12sC2Om10LSgutuwXTuSwIUNh\ncsAuNuwXNmTA5YPSDVhg/5F07f4pLdQxYBlb9gsbctiQAfaxYb+wIQMuD3yREgAAADCM0g0AAAAY\nRukGAAAADKN0AwAAAIZRugEAAADDKN0AAACAYZRuAAAAwDBKNwAAAGAYpRsAAAAwjNINAAAAGEbp\nBgAAAAyjdAMAAACGUboBAAAAwyjdAAAAgGGUbgAAAMAwSjcAAABgGKUbAAAAMIzSDQAAABhG6QYA\nAAAMo3QDAAAAhlG6AQAAAMMo3QAAAIBhlG4AAADAsJCU7n/84x8aNGiQbr31VsXHx8vr9QbN37Vr\nlwYPHqwWLVooISFBM2fOlN/vD0VUAAAA4JKFpHRHRUWpT58+GjVqVK55J06c0COPPKJbbrlFa9as\n0bRp0/T3v/9df/3rX0OQFAAAALh0nlCstEWLFpKkTZs25Zq3Zs0anTlzRsOHD5fH49GNN96oAQMG\nKDk5Wffee2+R1uPz+Yolb3FxuVxyuVyOrMvv9/PpQAHcbmffc/r9/lz7pNMZ8sshObd/Xmjf5Hfk\nLFv2C35HYCsb9gsbMuRg7PyfUGyLwo4XISndF/Ltt9+qVq1a8nj+F61evXo6cOCAMjIyVK5cuUIv\nKzU11UTEixIWFqY6deoqLMyZTZ6d7dXOnTuUnZ3tyPouRxEREapXr55j69uzZ48yMzNDmiG/HE7u\nn/ntm/yO/I8t+wW/I7CVDfuFDRkkxs5z2b4trCvdJ06cUFRUVNC0nNsnTpwoUumuWbNmSN6J5sXt\ndisszKOk+Z9p/5F0o+u6NiZarw1sqxo1anC05gKc3jeqV69uxVG8/HI4sX9eaN/kd+R/bNovfmsZ\n8ssBu9iwX9iQIScHY+dZodoWXq+3UAd6rSvdZcuW1U8//RQ07fjx44F5ReF2u60p3Tkfdew/kq7d\nP6U5tk5bnr+NnPr46dz1nf96OJ2hoBxO7Z82ZMgvhw1s2y9+SxnyywG72LBf2JDh3ByMnfZvC+u2\nWK1atfTtt98GXdFkx44dqlq1apGOcgMAAAC2CEnpPnPmjLKysgLnwGRnZysrK0s+n0/t2rVTqVKl\nNHPmTGVmZio1NVULFixQnz59QhEVAAAAuGQhOb1kxYoVGjduXOB2y5YtJUmzZs1S48aN9eabb2rC\nhAlq166dypYtq169eqlfv36hiAoAAABcspCU7m7duqlbt275zo+Li9PcuXMdTAQAAACYY9053QAA\nAEBJQ+kGAAAADKN0AwAAAIZRugEAAADDKN0AAACAYZRuAAAAwDBKNwAAAGAYpRsAAAAwjNINAAAA\nGEbpBgAAAAyjdAMAAACGUboBAAAAwyjdAAAAgGGUbgAAAMAwSjcAAABgGKUbAAAAMIzSDQAAABhG\n6QYAAAAMo3QDAAAAhlG6AQAAAMMo3QAAAIBhlG4AAADAME+oAwCAbVwul2Pr8vv9jq0LABA6lG4A\nOIfL5VJ46Qh5Spn/INB7xqfTWZkUbwD4DaB0A8B5PKXcSpr/mfYfSTe2jmtjovXawLY6bWwNAACb\nULoBIA/7j6Rr909poY4BACgh+CIlAAAAYBilGwAAADCM0g0AAAAYRukGAAAADKN0AwAAAIZRugEA\nAADDKN0AAACAYZRuAAAAwDBKNwAAAGAYpRsAAAAwjNINAAAAGEbpBgAAAAyjdAMAAACGUboBAAAA\nwyjdAAAAgGGUbgAAAMAwSjcAAABgGKUbAAAAMIzSDQAAABhG6QYAAAAMo3QDAAAAhlG6AQAAAMMo\n3QAAAIBhnlAHuJCjR49q0qRJ2rhxo06fPq3rr79ejz76qBo1ahTqaAAAAEChWX2k+6WXXtLhw4e1\nePFiffbZZ7r99tuVmJiotLS0UEcDAAAACs3qI9379+9X9+7dVbFiRUlSr169NHnyZO3bt0/169cv\n8PE+n890xEJzu51/f+P3+63aBudyuVxyuVyOrMvv98vv9+ea7vRrktfrYct+wbYIXQ4bMtiSw4YM\n+eWAXWzYL2zIYFMOG9i+Lawu3QMHDtQHH3ygDh06qEKFCnrvvfdUtWpV3XjjjYV6fGpqquGEhRcR\nEaF69eo5us49e/YoMzPT0XUWRlhYmOrUqauwMGd2v+xsr3bu3KHs7Oyg6U6/Jnm9HrbsF2yL0OWw\nIYMtOWzIkF8O2MWG/cKGDDblsIHt28Lq0t2gQQOtWLFCHTt2VKlSpRQdHa1JkyYpIiKiUI+vWbNm\nSN715CUUOapXr27tO9GwMI+S5n+m/UfSja7r2phovTawrWrUqBHyowN5vR627Bdsi9DlsCGDLTls\nyJBfDtjFhv3Chgw25bBBqLaF1+st1IFea0u3z+fTsGHD1LBhQ3322WcqW7asvvjiCz366KOaPXu2\natWqVeAy3G63NaXbqVMpzl+nLc//XDnbYv+RdO3+yZnz8/PaFk6/JjZksCWHDRlsyWFDBlty2JAh\nvxywiw37hQ0ZbMphA9u3hX1b7P9LT0/XgQMHdPfdd6t8+fLyeDxq06aNqlatqg0bNoQ6HgAAAFBo\n1pbuChUq6Prrr9d7772njIwM+Xw+rVu3Tt9//73q1KkT6ngAAABAoVl7eokkTZ48WVOmTFH37t11\n+vRpXX311XriiSfUrFmzUEcDAAAACs3q0l2tWjW99tproY4BAAAAXBJrTy8BAAAASgpKNwAAAGAY\npRsAAAAwjNINAAAAGEbpBgAAAAyjdAMAAACGUboBAAAAwyjdAAAAgGGUbgAAAMAwSjcAAABgGKUb\nAAAAMIzSDQAAABhG6QYAAAAMo3QDAAAAhlG6AQAAAMMo3QAAAIBhlG4AAADAMEo3AAAAYBilGwAA\nADCM0g0AAAAYRukGAAAADPOEOgCc53K5HFuX3+93bF0AUNI5OX5LjOFAcaJ0/8a4XC6Fl46Qp5T5\nDzm8Z3w6nZXJoA0AxcDJ8VtiDAeKG6X7N8hTyq2k+Z9p/5F0Y+u4NiZarw1sq9PG1gAAvz1OjN8S\nYzhgAqX7N2r/kXTt/ikt1DEAAEXE+A1cnvgiJQAAAGBYkUv3Sy+9lOf0CRMmXHIYAAAAoCQqcun+\n+OOP85y+cuXKSw4DAAAAlESFPqf7wIEDks5ePujHH38M+jbz3r17FR4eXvzpAAAAgBKg0KW7e/fu\ngeuDdu/ePTDd7/erVKlSevjhh4s/HQAAAFACFLp0L1++XJLUu3dvLV68ODDd7XarYsWKKl26dPGn\nAwAAAEqAQpfuKlWqSJLWr19vLAwAAABQEl3Udbo3b96s7du36+TJk0HThw8fXiyhAAAAgJKkyKV7\nxowZmjdvnmrVqqXIyEgTmQAAAIASpcil+4MPPtCcOXN08803m8gDAAAAlDhFvk631+tV/fr1TWQB\nAAAASqQil+6OHTtq9erVJrIAAAAAJVKRTy85duyYnn32WS1dulRXXnll0Lznn3++2IIBAAAAJUWR\nS3d4eLgSEhJMZAEAAABKpCKX7ueee85EDgAAAKDEKvI53QAAAACKpshHuu+44w65XK4853388ceX\nHAgAAAAoaYpcuh966KGg2z///LM++OAD9erVq9hCAQAAACVJkUt3165dc01r1aqVpk2bpvvvv79Y\nQgEAAAAlSbGc0x0XF6ctW7YUx6IAAACAEqfIR7p9Pl/Q7VOnTmnp0qWqVKlSsYUCAAAASpIil+4m\nTZrk+iJlmTJlNH78+GILBQAAAJQkRS7ds2bNCrpdpkwZXXfddSpTpkyxhQIAAABKkiKX7kaNGpnI\nkaetW7dq2rRp2rFjh9xut2644QbNnTtXbjeXFwcAAMDlo8ilW5LWrl2rJUuW6PDhw6pcubJ69eql\nNm3aFGuwrVu3asSIEXriiSc0depUhYWFaefOnfleIxwAAACwVZEPGX/00Ud6+umnVa1aNfXq1UvV\nqlXTs88+q+XLlxdrsKlTp6pHjx7q0qWLIiMj5fF4VL9+fUo3AAAALjtFPtL9zjvvaNKkSWrWrFlg\n2m233aZXX301z2t4X4xTp07p66+/1s0336z+/fvrwIEDio2N1eDBg9W+fftCL+fcK624XC7HCrvf\n75ff7w+aFopTYvx+f66rzTidw4YMtuSwIYMtOWzIYEsOGzLYksOGDPnlsIEt2yLU/55KdmwLGzLY\nlMMGtm+LIpfuw4cPq2nTpkHTGjdurMOHDxd1UflKT0+Xz+fTRx99pKlTp6pWrVpau3at/vSnP2n2\n7Nlq0KBBoZaTmpoqSQoLC1OdOnUVFnZRZ9MUWXa2Vzt37lB2dnZgWkREhOrVq+fI+nPs2bNHmZmZ\nQdOczmFDBlty2JDBlhw2ZLAlhw0ZbMlhQ4b8ctjAhm1hw7+nkh3bwoYMNuWwge3bosi/NZUrV9bm\nzZvVuHHjwLQtW7boqquuKuqi8pVzJZSuXbsGNl779u3VuHFj/fOf/yx06a5Zs6bcbrfcbrfCwjxK\nmv+Z9h9JL7acebk2JlqvDWyrGjVqhPwdcfXq1UP+jtiGDLbksCGDLTlsyGBLDhsy2JLDhgz55bCB\nDdvChn9Pc3I4La9tEeoMNuWwQai2hdfrDRzovZAil+57771XSUlJ6tGjh6pWraoDBw7oww8/1GOP\nPXZRYfMSFRWlqlWrXvLHVzmFO2c5+4+ka/dPacURsUAulyvoxQ/FuejnZwhFDhsy2JLDhgy25LAh\ngy05bMhgSw4bMuSXwwY2bAsb/j09N4eT+Hf9wjlsYPu2KPIW69atm8aOHavvv/9e7733nr7//nuN\nGTNGPXr0KOqiLqhv375avny5vv32W/l8Pq1du1YpKSlq165dsa4HAAAAMK3IR7o/+ugj3XjjjZo2\nbVpg2jfffKOPP/5YnTp1KrZg99xzjzIzMzVy5EgdP35c1apV04QJE1S/fv1iWwcAAADghIv6i5Rz\n584NmhYTE6MnnniiWEu3JA0aNEiDBg0q1mUCAAAATivy6SW//vqrYmJigqbFxMTol19+KbZQAAAA\nQElS5NIdExOjvXv3Bk3bu3evKlWqVGyhAAAAgJKkyKX79ttv15gxY/TNN9/o1KlT+uabbzR27Fh1\n6NDBRD4AAADgslfkc7qHDBmigwcPql+/foFLs3Ts2FEPPPBAsYcDAAAASoIil+7SpUvrxRdf1OOP\nP66DBw8qNjZWFStWNJENAAAAKBEu+u+4VqhQQRUqVCjGKAAAAEDJZN+fEwIAAABKGEo3AAAAYBil\nGwAAADCM0g0AAAAYRukGAAAADKN0AwAAAIZRugEAAADDKN0AAACAYZRuAAAAwDBKNwAAAGAYpRsA\nAAAwjNINAAAAGEbpBgAAAAyjdAMAAACGUboBAAAAwyjdAAAAgGGeUAcAAMB2LpfL0fX5/X5H1wdc\nKn5HCkbpBgDgAlwul8JLR8hTypkPh71nfDqdlXlZlgr8NvE7UjiUbgAACuAp5VbS/M+0/0i60fVc\nGxOt1wa21WmjawGKH78jBaN0AwBQCPuPpGv3T2mhjgFYi9+RC+OLlAAAAIBhlG4AAADAMEo3AAAA\nYBilGwAAADCM0g0AAAAYRukGAAAADKN0AwAAAIZRugEAAADDKN0AAACAYZRuAAAAwDBKNwAAAGAY\npRsAAAAwjNINAAAAGEbpBgAAAAyjdAMAAACGUboBAAAAwyjdAAAAgGGUbgAAAMAwSjcAAABgGKUb\nAAAAMIzSDQAAABhG6QYAAAAMo3QDAAAAhl0WpXvUqFGKj4/XV199FeooAAAAQJFZX7o/+ugjnTp1\nKtQxAAAAgIvmCXWAC/npp580ffp0/eUvf1Hnzp2L/HifzydJcrudf2/h9/sD67clQyhy2JDBlhw2\nZLAlhw0ZbMlhQwZbctiQIa8cNmSwJYcNGWzJYUMGW3LYkMGmHPmxtnT7/X4999xzGjx4sGJjYy9q\nGampqZKkiIgI1atXrzjjFWjPnj3KzMwM3LYhQyhy2JDBlhw2ZLAlhw0ZbMlhQwZbctiQIa8cNmSw\nJYcNGWzJYUMGW3LYkMGmHPmxtnQvXrxYfr9fvXr1uuhl1KxZU263OyTvfKpXrx7yd4HnZwhFDhsy\n2JLDhgy25LAhgy05bMhgSw4bMuSVw4YMtuSwIYMtOWzIYEsOGzKEMofX6w0c6L0QK0v3/v37NWfO\nHM2fP/+SlpNTuF0uV/EEKwKXyxX04tuQIRQ5bMhgSw4bMtiSw4YMtuSwIYMtOWzIkFcOGzLYksOG\nDLbksCGDLTlsyGBTjvxYWbq3bNmiY8eO6d577w2a/vjjj6tDhw4aM2ZMiJIBAAAARWdl6e7QoYOa\nNWsWNO2OO+7Q008/rd/97nchSgUAAABcHCtLd2RkpCIjI3NNr1ChgsqXLx+CRAAAAMDFs7J05yUl\nJSXUEQAAAICLYv0fxwEAAAAud5RuAAAAwDBKNwAAAGAYpRsAAAAwjNINAAAAGEbpBgAAAAyjdAMA\nAACGUboBAAAAwyjdAAAAgGGUbgAAAMAwSjcAAABgGKUbAAAAMIzSDQAAABhG6QYAAAAMo3QDAAAA\nhlG6AQAAAMMo3QAAAIBhlG4AAADAMEo3AAAAYBilGwAAADCM0g0AAAAYRukGAAAADKN0AwAAAIZR\nugEAAADDKN0AAACAYZRuAAAAwDBKNwAAAGAYpRsAAAAwjNINAAAAGEbpBgAAAAyjdAMAAACGUboB\nAAAAwyjdAAAAgGGUbgAAAMAwSjcAAABgGKUbAAAAMIzSDQAAABhG6QYAAAAMo3QDAAAAhlG6AQAA\nAMMo3QAAAIBhlG4AAADAMEo3AAAAYBilGwAAADCM0g0AAAAYRukGAAAADKN0AwAAAIZRugEAAADD\nKN0AAACAYZ5QB8jL66+/ri+++EKHDh1SZGSkGjVqpMTERFWuXDnU0QAAAIAis/JIt8vl0rhx47Rm\nzRotXbpULpdLI0eODHUsAAAA4KJYeaR7xIgRgf8PCwvTfffdp7vvvlvp6emKjo4u9HJ8Pp8kye12\n/r2F3+8PrN+WDKHIYUMGW3LYkMGWHDZksCWHDRlsyWFDhrxy2JDBlhw2ZLAlhw0ZbMlhQwabcuTH\nytJ9vg0bNig2NrZIhVuSUlNTJUkRERGqV6+eiWj52rNnjzIzMwO3bcgQihw2ZLAlhw0ZbMlhQwZb\nctiQwZYcNmTIK4cNGWzJYUMGW3LYkMGWHDZksClHfqwv3V999ZVmzZqlV155pciPrVmzptxud0je\n+VSvXj3k7wLPzxCKHDZksCWHDRlsyWFDBlty2JDBlhw2ZMgrhw0ZbMlhQwZbctiQwZYcNmQIZQ6v\n1xs40HshVpfudevW6ZlnntELL7ygli1bFvnxOYXb5XIZSHdhLpcr6MW3IUMoctiQwZYcNmSwJYcN\nGWzJYUMGW3LYkCGvHDZksCWHDRlsyWFDBlty2JDBphz5sbZ0f/zxx5owYYImTJigFi1ahDoOAAAA\ncNGsLN3JycmaMWOGpkyZovj4+FDHAQAAAC6JlaV74sSJ8ng8QVcxkaQ33niDEg4AAIDLjpWlOyUl\nJdQRAAAAgGJj5R/HAQAAAEoSSjcAAABgGKUbAAAAMIzSDQAAABhG6QYAAAAMo3QDAAAAhlG6AQAA\nAMMo3QAAAIBhlG4AAADAMEo3AAAAYBilGwAAADCM0g0AAAAYRukGAAAADKN0AwAAAIZRugEAAADD\nKN0AAACAYZRuAAAAwDBKNwAAAGAYpRsAAAAwjNINAAAAGEbpBgAAAAyjdAMAAACGUboBAAAAwyjd\nAAAAgGGUbgAAAMAwSjcAAABgGKUbAAAAMIzSDQAAABhG6QYAAAAMo3QDAAAAhlG6AQAAAMMo3QAA\nAIBhlG4AAADAMEo3AAAAYBilGwAAADCM0g0AAAAYRukGAAAADKN0AwAAAIZRugEAAADDKN0AAACA\nYZRuAAAAwDBKNwAAAGAYpRsAAAAwjNINAAAAGEbpBgAAAAyjdAMAAACGUboBAAAAwyjdAAAAgGHW\nlm6/368ZM2YoISFBLVq00ODBg5WamhrqWAAAAECRWVu633nnHS1btkzTpk3TmjVrdMstt+jhhx/W\nyZMnQx0NAAAAKBJrS/fixYvVv39/3XjjjYqIiNDw4cOVnZ2tNWvWhDoaAAAAUCSeUAfIy/Hjx3Xw\n4EHVq1cvMM3j8ah27dr69ttv1aVLlws+3u/3S5K8Xq/cbrfcbrd8Pp+qXxktj+G3GVWviJbP59OZ\nM2fk8/kC023I4GQOGzLYksOGDLbksCGDLTlsyGBLDhsyXCiHDRlsyWFDBlty2JDBlhw2ZAhlDq/X\nK+l//TM/royMjAvfIwQOHz6sTp06acmSJbrhhhsC0//4xz+qbNmyevbZZy/4eK/Xy/nfAAAAcEzN\nmjXl8eR/PNvKI91ly5aVdPaI97mOHz+uq666qsDHu91u1axZUy6XSy6Xy0hGAAAAwO/3y+/3y+2+\n8OF1K0t3VFSUqlSpoh07dqhBgwaSzh69/vbbb9WpU6cCH59zSgkAAABgA2ubae/evbVgwQKlpqYq\nMzNTM2fOlMfjUbt27UIdDQAAACgSK490S9KAAQN08uRJDR8+XCdOnFCdOnX05ptvqkyZMqGOBgAA\nABSJlV+kBAAAAEoSa08vAQAAAEoKSjcAAABgGKUbAAAAMIzSDQAAABhG6QYAAAAMs/aSgcXh9ddf\n1xdffKFDhw4pMjJSjRo1UmJioipXrhy4z6FDh/TSSy8pJSVF4eHhSkhI0KhRoxQWFha4z9/+9je9\n8847+vXXX1W9enWNGjVKjRo1kiTt3btX06dP19atW5WRkaGYmBj17NlTAwYMCPw1TCdynDx5UiNH\njtTu3buVlZWlcuXKqX379hoxYoRKly7tSIZzHTp0SHfddZfKlCmjlStXOvqaSFLnzp119OhRlSpV\nKjDtpZdeUuvWrR3L4Pf7tWDBAr3//vv6+eefVa5cOd1zzz0aOHCgIxlSUlI0YsSIoNclOztbERER\nWrdunaOvx5dffqkZM2Zo7969Cg8PV8uWLZWUlKTy5cs7lmHr1q2aOnWqUlNTFR4erk6dOmnEiBGB\nZRRHjq+++kpz587Vrl27lJaWpr///e+qVq1a0GtwoWU4lWH8+PH6+uuvtXfvXiUkJOjFF18Mmu9E\njoLGTicyFDRuOrlfnLus88dOpzJcaNx0MofpsbOgDE6NnYXZFqbHzsJkcGLsXLhwoT7++GMdOHBA\nYWFhqlevnhITE1WjRo3AMtLT0/Xyyy/r888/lyTdeuutevLJJxUVFeVYhmnTpumLL77Q999/r5tu\nuklz585VUZToI90ul0vjxo3TmjVrtHTpUrlcLo0cOTIw3+fzKTExUeXLl9fKlSu1cOFCpaSkaMqU\nKYH7fPrpp5o2bZrGjx+vtWvXqnv37nr00Ud1+PBhSWd3goYNG+rtt9/W559/rgkTJujdd9/Vu+++\n62iOsLAwPf744/rkk0/0+eefa8GCBfrmm280bdo0xzLk8Pv9GjdunG666aaQvCY5/vjHP2r9+vWB\nn5x/OJzKMHHiRK1cuVIvv/yyvvjiCy1dulQtW7Z0LEN8fHzQ81+/fr1q1qwZ9Fddncjx66+/Kikp\nSR06dNBnn32mxYsX68CBA3r55Zcdy3Do0CE98sgj6tSpk9asWaN58+Zp/fr1ev3114t1W0RGRqpL\nly4aP3688lLQMpzIIEk33nijkpKSAr8T53MiR0FjpxMZCho3ncqRI7+x08kM+Y2bTuYwPXYWlMGp\nsbOgHE6MnQVlcGrszMrK0ujRo7Vq1SqtWLFC119/vYYPH67MzMzAfZ555hkdPXpUH374oT788EMd\nPXpUzz77rKMZqlatqmHDhunOO+/Mc3sVKCMjw/9b+dm8ebM/Li7Of/DgQX9GRoZ/7dq1/rp16/r3\n798fuM9HH33kv/nmm/1Hjx71Z2Rk+O+55x7/uHHjgpbTtWtX/+TJk/Ndz9ixY/0PPPBASHPs2bPH\nf8899/gHDRrkeIY5c+b4H3zwQf+7777rb9WqVUhek9tuu82/YMGCkO0XO3bs8NeqVcu/ZcsWa/bN\nL7/80h8XF+f/+uuvHc2xadMmf1xcnP/QoUNB+0hCQoJjGebNm5drfQsWLPA3aNDA/8svvxRbjpyf\nXbt2+ePi4vw7duwIml6UZZjKcO7PqFGj/ImJiUb2z6LkyPm50NjpRIaCxk3TOQo7dprKUJRx01QO\nJ8bOou4XpsbOgnI4MXYWlMHpsTPn59ChQ/64uDj/pk2bgvKlpKQE7pOSkuKPi4vzf/fdd45kOPfn\n1Vdf9ffp06fQvys5PyX6SPf5NmzYoNjYWEVHR0uSvv32W11zzTWqWLFi4D716tVTZmam9u7dG7jP\n+Ucd6tatq2+++SbPdXi9Xm3atEm1atUKSY6nn35aLVq0UEJCgnbt2qX77rvP0Qz79u3T22+/raee\neirf5+/UtnjzzTfVpk0b9e7dW/Pnz1d2drZjGTZu3KgyZcroiy++UKdOnZSQkKDRo0fr4MGDjm+H\nHIsXL1bjxo11ww035DnfVI5atWqpdevWWrJkibKzs3XkyBGtWrVK7dq1cyyD3++X3x/8d8B8Pp9O\nnToVWEZx5ChIUZdhIsPFcCJHQWOnyQyFHTdN5ijK2GlyWxR23DSVw4mxs6hMjZ0FcWLsLEioxs4N\nGzYoMjJS1113nSRp165dCg8PV1xcXOA+cXFxCgsL065duxzJUBx+M6X7q6++0qxZs4IGtBMnTigq\nKirofjm3T5w4ke99oqOjA/PP5ff79ec//1ler1f9+/cPSY4XX3xR69evV3Jysnr16qXY2FjHMpw5\nc0bPPvusHnnkEcXExOT5/J3IIZ09Z3XZsmVavXq1nnrqKS1evFjTp093LMOxY8d04sQJ/fe//9Wi\nRYu0dOlSlS5dWiNHjtSZM2cc2w45jh07ptWrV6t379655pnO4XK51LVrVyUnJweKTUREhAYPHuxY\nhubNm+vw4cNKTk5Wdna29u7dGziNIa/tdbE5ClKUZZjKUFRO5Cho7DSdoTDjpskcRRk7TW6Lwo6b\nJnM4MXYWhcmxsyBOjJ0FCcXYuWvXLv35z3/W6NGjFRkZKUnKyMhQuXLlct03KipKGRkZjmQoDr+J\n0r1u3To9/vjjeuGFFwLnhUlS2bJldfz48aD75twuW7ZsvvdJT08PzM9x5swZjRs3Ttu3b9dbb72V\na75TOaSzv6hxcXGqVauWRo8e7ViGd955RxUqVFDnzp1zZTqf6W3RqFEjlS1bVh6PRw0bNtTQoUO1\nYsUKxzLk/Pehhx5S+fLlFRUVpZEjRyo1NTXoXbVT+8Tf//53RUVFqW3btrnmmc6xefNm/elPf9IT\nTzyhDRs26J///KcqV66sYcOGBR1BMZnh2muv1ZQpU/SPf/wjcOSsZ8+ekqQKFSoU27YoSGGXYTJD\nUTiRo6Cx06ltcaFx03SOwo6dprdFYcZN0zmcGDuLwuTYWRAnxs6COD12bt++XcOGDdOwYcMC65Gk\ncuXK5SrXOcs5t4ybzFAcSnzp/vjjj/XMM89owoQJuT6SqVWrln788UcdO3YsMG3Hjh2KiIgIfJxQ\nq1Yt/fe//w163M6dO1W7du3A7dOnT+uJJ57Q7t27NXv27DyPVDiR43xerzdokDKd4csvv9TmzZvV\nrl07tWvXThMnTtSRI0fUrl07bdy4MaTbwu0O3tVNZ8j5b84VbPLi1Hbw+Xx6//331bNnT3k8uS9Y\nZDrHjh07dP3116t9+/byeDyKjo5W3759tW3bNv3yyy+ObYtmzZpp3rx5gS8kud1uVa5cOeijw0vN\nUZDCLMN0hsJyIkdBY2cotsX546YTOQozdoZiW5w/bjqRw4mxs7BMj50FcWLsLAynxs6vvvpKDz30\nkEaOHKm+ffsGLSMuLk6nT58OOpVk165dys7ODpxyYjpDcSjRpTs5OVkvv/yypkyZohYtWuSa37Bh\nQ1WvXl2TJ0/WiRMndOjQIc2YMUM9evQIXC6qd+/e+vDDD5WSkqLs7GwtXrxYe/fuVdeuXSWdveTU\niBEjlJaWppkzZ6p8+fIhybF9+3b961//0qlTp+Tz+bRjxw7NmjVLrVq1cizDxIkTtWTJEi1atEiL\nFi3SsGHDVKlSJS1atEi33HKLYzn27dunlJQUZWVlyefz6euvv9Zbb72ljh07OpbhlltuUe3atTVz\n5kwdP35cJ0+e1BtvvKG4uDhdd911jmTI8eWXX+rw4cPq1atXrvU4kaNBgwbau3ev1q5dK5/PpxMn\nTui9997T1VdfrUqVKjm2LbZv367Tp08rOztba9eu1Zw5c5SYmBj4x704cvh8PmVlZen06dOSzha4\nrKyswMfiBS3DiQzS2cuf5Uzz+/1B93dqWxQ0djqRoaBx06kcBY2dTmQoaNx0als4MXYW5ndEMj92\nFpTDibGzMNvCibFzzZo1Gj16tJ599ll169Yt1zKqVKmiVq1aacqUKfr111/166+/asqUKWrdurVi\nY2MdySDlPXZmZWXled+8uDIyMvwF3+3yFB8fL4/HE3QtX0l64403FB8fL0k6ePCgJkyYoM2bNys8\nPFwdO3ZUUlKSwsPDA/dPTk4OXP/3+uuvD7r+7/LlyzV27FiVLl066KhAbGyslixZ4liOLVu2aNKk\nSdq3b598Pp8qVaqktm3b6sEHH1TZsmUdyXC+ZcuWafr06UHX6XYix/bt2/X888/rxx9/lMvl0pVX\nXqnOnTtrwIABCgsLc2xb/N///Z9efvllffXVVwoPD1ejRo302GOPKTY21tHXIzExUWFhYXr11Vdz\nvUZO5Vi5cqXmz5+vgwcPyuPxqG7dunr00UcVFxfnWIaRI0cqJSVFXq9XN9xwg4YMGaI2bdoU67bY\ntGmTHnzwwVzbedy4cYFB/ELLcCrDAw88oM2bNwfNj42NDZxK4ESOgsZOJzIUNG46tS3Od/7Y6USG\ngsZNJ7eF6bGzsK+H6bGzMDlMj52FyeDE2NmlSxcdPnw4UIBzPP3004FLNaalpQUuIykFX6fbqQxj\nx47V8uXLc22vlJSUXNPyUqJLNwAAAGCDEn16CQAAAGADSjcAAABgGKUbAAAAMIzSDQAAABhG6QYA\nAAAMo3QDAAAAhlG6AQAAAMMo3QAAAIBhlG4AKIH8fr8effRRJSYm5po3atQoPfzww/L7+dtoAOAU\nSjcAlEAul0vPPfecdu7cqeTk5MD0JUuWaNu2bXr++eflcrmKbX3Z2dnFtiwAKIn4M/AAUIJt3LhR\nI0eO1Ntvv61SpUqpf//+mjRpkrxer2bNmqW9e/eqQoUK6tu3r+6++25JUlZWlsaMGaOtW7fqxIkT\nuvLKK9W3b1/dddddgeV27txZXbp00fbt27V161YNHjxY999/f6ieJgBYzxPqAAAAc5o2bap+/frp\nqaeeksfjUd++fVWqVCk98cQTeuWVV9SkSRPt3r1bI0aMUPny5dWpUyf5/X61bNlSY8aMUdmyZbV+\n/XqNHj1a1157rVq0aBFY9vvvv69XX31VN998szIzM0P4LAHAfpxeAgAl3NChQxUeHi5JGj58uP76\n17+qd+/eatasmdxut2rWrKlevXpp2bJlkqSIiAh1795dUVFRcrvduvXWW9WiRQv961//Clput27d\n1KBBA7lcLkVGRjr+vADgcsKRbgAo4Twej2rWrCmv1yuPx6N9+/Zp48aNWrx4ceA+Pp9PlStXliSd\nPn1a06ZN09q1a/XLL79IkjIzM5WQkBC03CpVqjj3JADgMkfpBoDfmJiYGP3+97/Xgw8+mOf8hQsX\nat26dZoyZYqqVasmt9utxx57LNfVTtxuPiwFgMJixASA35i7775bycnJ+uqrr+T1euX1epWamqrN\nmzdLkjIyMhQWFqaKFSvK5/Pp008/zXVqCQCgaDjSDQC/MW3btlV4eLhmzpypH374QZJUrVo13Xff\nfZKk/v37KzU1VZ07d1bp0qXVrl07tWnTJoSJAeDyxyUDAQAAAMM4vQQAAAAwjNINAAAAGEbpBgAA\nAAyjdAMAAACGUboBAAAAwyjdAAAAgGGUbgAAAMAwSjcAAABgGKUbAAAAMIzSDQAAABhG6QYAAAAM\n+3+vm46Ce8bITwAAAABJRU5ErkJggg==\n" } } ], "source": [ "plt.figure(figsize=(9,5))\n", "sns.countplot(x='Year', data=data, order=sorted(data['Year'].unique()))\n", "plt.gca().set_facecolor('#f4f4f4') \n", "plt.gcf().patch.set_facecolor('#f4f4f4')\n", "plt.title('Number of Fellows Per Year')\n", "plt.show()" ], "id": "97943889" }, { "cell_type": "markdown", "metadata": {}, "source": [ "Top 10 universities visualization" ], "id": "06f59ab1-a2b2-41c1-b60f-563b8bb1c2bd" }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [ { "output_type": "display_data", "metadata": {}, "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwAAAAF3CAYAAAASOSzeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90\nbGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA7E\nAAAOxAGVKw4bAACn/UlEQVR4nOzdeVwV1f/48Rf75g6EoLiQWdpiXhXNy6KAspng7seKTMXUcI3U\npE+k5b6iCJpLbp/SVEQIS3NJERO3ylLLElFBUVFUVuFy7+8Pf9xvV0ABQRTfz8eDR96ZM+e859yB\nznvmzIxeVlaWBiGEEEIIIcQzQb+6AxBCCCGEEEI8PpIACCGEEEII8QyRBEAIIYQQQohniCQAQggh\nhBBCPEMkARBCCCGEEOIZIgmAEEIIIYQQzxBJAIQQQgghhHiGSAIghBBCCCHEM0QSACGEEEIIIZ4h\nkgAIIcRTRKFQPPTH19e3yuNYsmQJo0aNomvXrigUCmJiYkotGxUVRe/evenYsSO9evViy5YtZWrD\n19eXkJCQEtctW7YMhUKBSqUqd+y+vr6EhoaWe7vHQaFQsGzZMu3nffv2sWHDhmLljh07hkKh4Nix\nY48lrkfp7/K20bNnTwoKCnTWXbx48aHHWVUJDQ3Fy8vrsbdbXrm5uXzyySe4u7ujUCiYO3duqWVL\n+9tR2u9bae7/XYqJiUGhUHD58uUK74d4PAyrOwAhhBBlt2bNGp3PwcHBvPDCC7z//vvaZcbGxlUe\nx6ZNm2jZsiXOzs589913pZaLiopi+vTpvPfee3Ts2JEjR44wc+ZMNBoN/fr1q/I4SzJ//nwsLCyq\npe2HWbNmDTY2NtrPP/30E4mJibz99ts65V566SXWrFmDg4PD4w6xyqWkpLB9+3b69u1b3aE8VTZt\n2sTOnTsJDQ2lSZMmWFlZPbD8m2++SZ8+fXSW1a9fvypDFE8QSQCEEOIp8tprr+l8NjIyol69esWW\nV7UDBw6gr6/PxYsXS00AVCoVS5cuxdfXl6CgIAA6dOjA9evXiYyMxN/fHyMjo8cZNnBv8Pw4FRYW\notFoMDR8+P9yy/o91qpV67F/549Lp06dWLlyJW+++SYmJibVHc5jkZ+f/8iJ+/nz57G2tqZHjx5l\nKv/cc8/V2GNIPJxMARJCiBrmjz/+YMSIESiVSjp37sz777/PH3/8oVOmaFrDb7/9xttvv02nTp3w\n9fVl48aNZWpDX//h//s4efIkGRkZ+Pj46Cz39fXl1q1b/Prrr2Xep4e5fPkyCoWCLVu2EBkZSffu\n3XFxcWHs2LFcvXq1WPtF0xZOnTqFQqFg//79xeqcOXMmbm5uOtNRtm7dyoABA+jUqRNubm5MnTqV\n27dv62ynUCgIDw/nq6++okePHnTs2JF//vmHnJwcZs+ejY+PDx07dsTd3Z0RI0Zw/vx5nW2LpgCF\nhoYSGxvLtWvXik3vKm0K0J49ewgICKBz5864uLgwceJErly5olPm+++/5z//+Q9KpRJnZ2f69+9f\n5mlZ58+fZ/jw4XTu3Jnu3bsTGRmJWq0GID09HUdHR77++uti2y1btozOnTtz586dh7YRFBTE9evX\n+fbbbx9YLjQ0tMTpboGBgQQGBmo/F/XVvn37+OKLL+jSpQsuLi7MnTuXwsJCTp06xZAhQ+jcuTN9\n+/bl0KFDJbZXlt+V1NRUQkJCcHNzo2PHjgwcOJC9e/cW6wuFQsE///zDqFGjUCqVTJo06YH7GhcX\np3PcffLJJ1y/fl27XqFQEBsbS1pamvZYedTpYWU5lsqioKBAeyLA0dERX19fli5dqvN71b9/f6ZN\nm6b9nJmZSYcOHYpNvXrvvfeYOHGi9vPXX39N7969eeONN3B1deWtt94q1t+iZHIFQAghapCzZ88S\nGBhI8+bNmTp1Knp6enz11VcEBgaydu1aWrZsqS2bnZ3N5MmTeffdd7G3t2fXrl3MmTMHc3Nzevbs\n+cixJCUlAfD888/rLC/6nJSURIcOHR65nX/76quvaNOmDaGhody8eZOFCxfyySefsGLFihLLv/zy\nyzRr1owdO3bg6uqqXV5QUMCuXbvw8vLSXqVYvHgxGzZsYODAgYwbN45r164RERHBuXPn+OqrrzAw\nMNBuHxsbS6NGjRg/fjympqZYW1szf/589u/fT1BQEPb29ty+fZvffvuNzMzMEmMbNmwYGRkZnDp1\nioULFwIPnt61ZcsWZsyYQc+ePRk+fDjZ2dksX76cwMBANm3ahIWFBb/88guffPKJdh/UajXJyclk\nZWWVqX8//PBDevbsyXvvvcfPP//MihUr0NPTY8SIEVhZWdG1a1eioqIYNGiQdpvCwkK2b99Ot27d\nqFOnzkPbaNmyJR4eHnz11Vf07t270qZrzZs3Dzc3N2bNmsWJEydYuXIlarWaxMREAgICGDZsGCtX\nriQ4OJi4uDid6TBl+V1JS0sjICCABg0a8OGHH1K/fn127drFRx99xIIFC3SOL4AJEybg5+fH4MGD\nH5hQb926lenTp9O9e3dGjx7N9evXCQ8P548//uDrr7/G3NycNWvWsHz5cv7++2/mzZsH8NDpYRqN\nptg9HUVXqcpyLJVVaGgoP/74I0OGDOH111/nt99+Y/Xq1aSmpjJjxgwA2rdvT3x8vHab48ePY2Rk\nxLVr17hw4QJNmzYlJyeHU6dO8dFHHwGwY8cOFi5cSGBgIG3btuXu3bv8/fffZUoyhSQAQghRo6xY\nsQIjIyOWL19O7dq1AejYsSM9evRg+fLlzJ8/X1s2OzubTz75BE9PTwCUSiXXrl1j2bJlvPnmm+jp\n6T1SLEVnxu8f9BV9ror/UdvZ2WkHFQAZGRksWrSI69evY21tXeI2Pj4+rFq1iszMTG2fHTx4kNu3\nb2vPMF++fJl169YxfPhwhg8frt22adOmDBkyhAMHDtC1a1ftco1GQ0REBKamptplJ0+exNvbG39/\nf+0yNze3UvfF3t6e+vXrY2Rk9NCpGjk5OSxevJiePXvy2WefaZe/8sor9OrVi+joaN566y1+//13\nateurR1EAbzxxhsPrPvfevXqxXvvvafdLjs7mw0bNvDWW29Ru3Zt+vXrx/Dhwzlx4gQKhQK415dX\nr14tNt/8QUaNGkXfvn353//+p9Pfj6JDhw58+OGHwL1pRgcPHmTTpk2sWrWKtm3bAmBlZcXAgQM5\nePAgb775pnbbsvyuLF++HI1Gw4oVK6hXrx4AnTt35urVq0RGRhZLAAYOHKiTKJWksLCQyMhI2rdv\nz6xZs7TLmzVrxtChQ9m+fTv/+c9/eO2116hXr16ZjpUiq1evZvXq1TrLoqOjsbKyKtOxVBb//PMP\nP/zwA8OHD2fEiBHAvePG0NCQiIgIBg8eTMuWLWnfvj0bN27k8uXL2NnZcfToURwdHTl//jxHjx6l\nadOm/PLLL6hUKtq3bw/c+3164YUXdI4PJyenMsUlZAqQEELUKCdOnMDZ2Vk7kIV788VdXV05ceKE\nTlkDA4NiA1BPT0/S0tK4du3aY4m3simVSp3PLVq0AHjg1AUfHx/y8/PZvXu3dllcXBzNmjXjlVde\nAeDw4cOo1Wq8vb1RqVTan1deeQULC4tifdu5c2edwT9A69atiY2NZdWqVZw+fZrCwsJH2td/O3ny\nJFlZWcXis7GxoVmzZtr4Xn75Ze7cuUNISAgHDhwo9epDabp166bzuXv37uTk5PDPP/8A987kOjg4\nsHXrVm2ZrVu38sILL5RrvnnTpk3p0aMHGzZsKDbFqqLuPzaaNWuGmZmZdvAP0Lx5c4Bi08bK8rty\n6NAhnJycqFWrls538MYbb3D27NliV1n+nTCW5sKFC9y8eRNvb2+d5W3btsXW1pbjx48/tI7S+Pn5\nsWHDBp2fhg0blvlYKouisvdPAyz6XLS+ffv26Ovrc/ToUQCOHj1Khw4d6NChg84yKysr7Xf08ssv\n89dffzF79mwSExPJzc2tcF88i+QKgBBC1CB37twp8ekflpaWxc64165du9hNuA0aNADg2rVrOk+j\nqYh/n+n/99n3ojgeNh3EwMBAO7/8fmq1Gj09PZ1pNwB169bV+Vw0ZSY/P7/Uduzs7FAoFMTFxdGr\nVy8yMzM5ePAgw4YN05a5efMmcG/QVJL7B6klfQeTJk3CysqK7du3s3TpUurWrYuvry8ffPABZmZm\npcZXFkXxjRw5ssT1RX3drl075syZw8aNGwkODgbuzR+fMGGCzvSw0lhaWpb4+d8JY9++fVm0aBEf\nffQROTk5HDp06KFz3EsyfPhwvv/+e9asWUOvXr3Kvf397j/ejIyMdBLlomUAd+/e1Vlelt+VjIwM\nvvvuu1Jvir99+za1atXSfn7YU3qKtimtbEm/0+VhZWVF69atiy0v67FUFkXx3X/1rei4+fdVwpYt\nW3Ls2DFcXFw4d+4cHTp0wMrKSvs402PHjulMGezRowd3795l+/btbN68GUNDQ5RKJR9++CF2dnZl\njvFZJQmAEELUIHXq1OHGjRvFlt+4caPY/7gzMzMpKCjQGdgU/c//ueeee+RYiuYgJyUl6QwAiu4N\neNgc5QYNGujc6Phv169fp379+o88TamIr68vn3/+OZcvX+bnn3+moKBA56xl0ZSOiIiIEgdA9yce\nJcVlbm7O6NGjGT16NJcvX2bPnj0sWbIEIyMjxo4d+0jxF7U/derUYvdcFLVdxMPDAw8PD3Jycjh2\n7BiLFy8mKCiIH3744aE3d9+4cYPGjRvrfAbd46VHjx6Eh4cTGxvLnTt3MDU1LXYGuyxsbW3p06cP\nmzZtwsXFpdh6Y2PjYu8LgHuDyvu/j0dVlt+VunXr0rZtWwYPHlxiHfcPgsty7BbtR2m/061atSpT\n/OVRnmPpYYp+V9LT07G3t9cuL9qff39P7du358cff+TYsWPUrVuXF154ASsrK27evMmvv/7KX3/9\npTONTE9Pj759+9K3b1/u3LnDzz//zMKFC5k8eTLr1q0r304/g2QKkBBC1CDt2rUjISGB7Oxs7bLs\n7GwOHDhAu3btdMoWFhYWe2LGzp07adiwYaUkAEXzknfs2KGzfMeOHdStW5fXX3/9gdu3b9+e33//\nvVgSkJeXR0JCgnYucGXw8PDA2NiY77//nri4ONq2batzFrFjx47o6+uTlpZG69ati/00atSoXO3Z\n2dnxzjvv0KJFC86dO1dqOSMjo2Jno0vSpk0bLCwsuHTpUonxNWvWrNg25ubmuLi40KdPH9LT08s0\n1ebHH3/U+bxr1y7Mzc21U63g3pQzb29vtm7dyvbt2/H09NQ5810eQ4cORU9Pj5UrVxZbZ2try82b\nN8nIyNAuu3TpEsnJyRVq60HK8rvSuXNn/v77bxwcHEr8DirymM+mTZtiaWnJzp07dZb/9ttvXLly\npVJ/B4pU5FgqTdF9IPfHX/Q34d9/kzp06MDVq1fZunUr7du3R09PjwYNGvD888+zbNkyCgsLS93f\nOnXq4OnpSbdu3bTT0cSDyRUAIYSoQYYNG0Z8fDwjRozQnolcu3YteXl5xW6mtLCwICwsjIyMDJo0\nacLOnTtJTEzUPj3oQY4fP05GRgbp6ekAnD59Wntm0MPDA7g3eB01ahQzZ87kueeeo2PHjhw9epTt\n27czceLEh74DYNCgQcTGxjJ48GCGDBlCkyZNuHbtGhs2bCA7O1vnUY+Pqug+iW+//Zb09HT++9//\n6qy3t7fn3XffZfbs2SQnJ9OuXTuMjY25evUqiYmJ+Pv7P/SJRu+++y6urq60aNECc3Nzjh8/ztmz\nZx/43HYHBweioqLYvHmzdhD5wgsvlBj/2LFjmT17NhkZGSiVSmrVqsW1a9c4fvw47du3x9vbm8jI\nSG7cuKGdXnHt2jW++eYbXnzxxTK9BGrbtm2o1Wpefvllfv75Z7Zt28b7779fbCpNv379tPcBPMoL\nvRo0aMB//vOfYjerwr3jLDIykpCQEN5++21u3brFV199pb1aU5nK8rsyYsQI7dOEBgwYgJ2dHXfu\n3OHcuXOkpKTo3FBbVgYGBowYMYLp06cTEhKCj48P169fZ+nSpTRp0qTUKWmPoqzHUlm0aNECLy8v\nvvzySwoLC2nTpg0nT55k5cqVeHl56RzLbdu2xcDAgCNHjjB58mTt8vbt27Np0yYaNmyocxXh888/\nx8LCgtdee4369etz8eJF4uLiynVT+7NMEgAhhKhBWrZsyZdffsnSpUv59NNP0Wg0vPrqq6xYsaLY\nHG8LCwtmzpzJ3Llz+eeff2jQoAEfffSRztNPSrNs2TKdGxC//fZb7XPb/32TYNHgb8OGDaxbt46G\nDRsyadIk+vfv/9A2GjRowJo1a1i2bBnLly/n1q1b1KpVC4VCwbRp00qcnvAofH192bVrFyYmJri7\nuxdbP3r0aJo3b67dVz09PWxsbHB0dKRJkyYPrV+hUPDjjz+yZs0aVCoVjRs35sMPP+Q///lPqdv0\n6tWL33//nfDwcDIzM7G1tSUuLq7Esn379qVhw4asW7eOH374gcLCQqytrWnbti0vvvgicO9JLt98\n8w3z58/n9u3bNGjQgE6dOjFq1Kgy9dGCBQuYM2cOK1eupFatWgwbNqzERKxly5Y0bdoUCwuLR56m\n8u6777Jly5Zi892bNGnCnDlziIiI4MMPP6RJkyZMmDChxGThUZXld8XW1pYNGzawfPlywsPDycjI\noF69ejz//PNlfjlXSfr06YOpqSnr1q1jwoQJmJubo1QqGTt27CPfO1KashxLZTV16lQaNWrE9u3b\nWbVqFVZWVrz77rvFTkjUqlWLVq1a8ccff+gk0x06dGDTpk3FEuzXX3+dmJgY4uLiyMrKwtraGh8f\nH+3ThsSD6WVlZWmqOwghhBCPV2hoKImJifzwww/VHYqogZKTk+nTpw///e9/dR57KoR4MsgVACGE\nEEJUiqtXr3Lp0iWWLVuGlZVVsTe5CiGeDHITsBBCCCEqRdE9ATdv3mTGjBnF3oUghHgyyBQgIYQQ\nQgghniFyBUAIIYQQQohniCQAQgghhBBCPEPkJmAhRI2gVqtRq9Xo6elV2tthhRBCiCeVRqNBo9Gg\nr6//0Ld4308SACFEjaBWq+UNkEIIIZ45LVq0kARACPFsKjrr7+DggKGh/GmrbEUJVkX+RyPKRvq4\nakn/Vj3p46p1f/8Wfa7IVW/5v6QQokYo+gNoaGiIgYFBNUdT8+jr62NqaoqhoaFMsaoi0sdVS/q3\n6kkfP5xG8+gP37x/yo8kAEKIZ56FhYWceaoiL7/8cnWHUONJH1ct6d+qJ31cOlWhmvy7eZWSBDwq\nSQCEEDXKpPX7Sb5+p7rDEEIIIbTsreqwYHBX8qs7kP9PEgAhRI2ScuMOSVdvV3cYQgghxBNLrpML\nIYQQQgjxDJEEQAghhBBCiGeIJABCCCGEEEI8QyQBEEIIIYQQ4hkiCYAQD/Hnn3/yn//8BycnJz7+\n+ONKrdvLy4uYmJhKrbMkQUFBrFixosrbKc2OHTvo1atXtbUvhBBCiP8jCYB4KqSmpvLxxx/TvXt3\nlEol3bt3Z/To0Vy/fh2AY8eOoVAoUKlUld724sWLadOmDQcPHmTmzJmVXv+DKBQKEhMTiy339fVl\n27ZtZa4nPDycwMDAygytXHx8fHTiDQ0NJSQkpNriEUIIIZ5l8hhQ8VQYPXo0bdu2ZfPmzdStW5cb\nN25w6NChx/KmwZSUFLp16/ZIdRQUFGBkZFRJET15avr+CSGEEDWJXAEQT7xbt26RnJxM3759qVu3\nLgCWlpa8+eabWFlZceXKFUaPHg2Aq6srSqWSVatWARAZGYm/vz9OTk54e3sze/ZscnNztXWHhoYy\nefJkZs2aRdeuXfHw8CAiIgKA/Px8lEolqampzJ49G6VSyY4dOwCIj49n0KBBuLi44O/vz7p161Cr\n1dp6FQoFGzZsYPDgwXTu3Jm9e/eSk5PD1KlT6dq1K56ennz99deV0j9FVz92796t3deRI0dy7do1\nbZnAwECWLl0KwJQpU5g6dapOHWfOnMHR0ZEbN24AcP78ecaMGYOHhweenp7MnDlTp998fX2JjIzk\ngw8+wMnJiQ0bNmi/hy5duuDi4kK/fv04ceIEADExMXh5eQGwatUqvv/+e3788UeUSiVKpZIrV67g\n6+tLbGysTlzr1q3jP//5T6X0kxBCCCHukQRAPPHq1atHixYtmD59Otu3b+fs2bM6g21bW1uWLFkC\nwP79+0lISGDo0KEA2NvbExkZSXx8POHh4SQkJLBy5Uqd+vft20fbtm3ZvXs38+fPZ82aNRw9ehRj\nY2MSEhJo2LAhkyZNIiEhAR8fH06dOsWHH37I4MGD2bt3LzNmzGDDhg188803OvVGRUXx6aefkpCQ\ngKurK/Pnz+evv/5i48aNREdH89dff2kH3JVh3759rF+/nu+//568vDzCw8NLLOfv78+PP/5ITk6O\ndtm2bdtwdnbG0tKSjIwMhg4diqOjIzt27GDjxo1cuHCBefPmFdu/4cOHEx8fz8CBAwkPD+e5555j\n586d/PTTT8ydOxcbG5ti7Q8dOhRvb2+6detGQkICCQkJ2Nra0rt3b6KiorTlNBoNUVFR9OnTp5J6\nSAghhBAgCYB4Snz55ZcolUq2bNlCQEAAbm5uLFy4kPz8B79Uu0ePHtja2qKnp8fzzz9P//79+fnn\nn3XKtGnTBk9PTwwMDGjTpg0tW7bk1KlTpdZZNFju3r07hoaGtG7dmoCAALZu3apTbtCgQTg4OKCn\np4exsTFxcXG8//772NjYYGZmRnBwsE4i86iCgoKoXbs2tWvXxsvLiz/++KPEch06dKBBgwbs3LkT\ngNzcXH744QftTbpxcXHY29vz9ttvY2xsTP369RkxYgTfffcdhYWF2np69uxJmzZt0NPTw8zMDEND\nQ9LT00lJSUFPT49mzZrRqFGjMsfv7+/P6dOnOXfuHABHjx4lPT0db2/vinaJEEIIIUog9wCIp0K9\nevUYOXIkI0eOJD8/n4SEBEJDQzEzM2PEiBGlbrdlyxaioqK4cuUKhYWFqFQq7TSiItbW1jqfzczM\nyM7OLrXOq1ev4uDgoLPM3t6etLQ0nWX/HvxmZGSQn5+vs6x27drFYrmfoaFhiTc2q1QqDA11f33/\nvR9mZmY6Z/j/TU9PDz8/P6Kjo+nVqxe7d+/GwsKCzp07A3Dx4kXOnDmDi4tLse1u3LjBc889B4Cd\nnZ3O+vHjx7Ny5UqCg4O5c+cOTk5OjBkzBktLywfuYxFLS0vc3NzYunUrEydOZOvWrXh5eWFhYVGm\n7YUQQghRNnIFQDx1jI2N6dq1K46Ojvz5558AJd4M/NtvvzFnzhzGjx/Prl27OHDgAKNGjUKj0TxS\n+zY2NqSkpOgsS0lJoWHDhjrL9PX/79erfv36GBsbc/nyZe2yzMxM7ty588C2GjVqxMWLF3WWZWdn\nc+PGDRo3blzRXaBnz56cOXOGc+fOsW3bNnr27KmN19LSktdff50DBw7o/Bw+fFg7+L9//+BekhYc\nHMy2bdv45ptvuHLlCgsWLCix/dJu3u7bty9xcXFcvnyZffv20bdv3wrvoxBCCCFKJgmAeOLduXOH\nxYsXc/bsWfLz8yksLCQxMVF78yuAlZUVABcuXNBul5WVhb6+PvXr18fIyIgzZ87w7bffPnI8fn5+\nxMfHs2fPHgoLC/nzzz9Zt24dvXv3LnUbfX19fHx8WL58OdeuXSM3N5eFCxc+9ClGfn5+rF+/nlOn\nTqFWq7l16xZz5syhefPmvPLKKxXeB2trazp37kxYWBgnT57Ez89Pu65nz5789ddffPvtt+Tm5qLR\naEhLS2Pfvn0PrHPnzp1cunQJtVqNubk5RkZGGBgYlFjW0tKSlJQUnSlFAO3ateO5554jODiYF198\nkZdeeqnC+yiEEEKIkskUIPHEMzIy4tatW0yaNInr16+jr6+PjY0NgwcP5p133gGgadOmDBw4kOHD\nh1NQUMB7773Hu+++S58+fRg+fDgqlYpXX32VHj166NxoWhGvvvoqc+fOZfny5Xz22WfUr1+f//zn\nPw99Ws2HH37InDlz6N+/PyYmJrz77rsPnR7zzjvvYGhoSGhoKFevXsXCwgKFQsHixYsf+bGbvXr1\nYvz48XTq1ElnOo+trS1r1qwhPDyclStXkpeXh7W1NV5eXnTt2rXU+s6ePUtYWBi3bt3C1NQUR0dH\nxo8fX2LZPn36cOzYMdzc3NBoNGzatAlbW1vg3lWA2bNn8+mnnz7S/gkhhBCiZHpZWVmPNh9CCCEq\nUUJCAh9//DE7d+7EzMyszNup1WrOnj3LvP0pnL1yuwojFEIIIcrHwaYum4P9yMnJqfBU5KL/z7Vs\n2RJ9ff1in8tDpgAJIZ4Yubm5rF27lj59+pRr8C+EEEKIspMEQAjxRNi8eTPu7u4A2vc4CCGEEKLy\nyT0AQognQr9+/ejXr191hyGEEELUeHIFQAghhBBCiGeIJABCCCGEEEI8Q2QKkBCiRmlsWQeVurqj\nEEIIIf6PvVWd6g5BhyQAQogaZfY7ruV+HJoQQghR1VSFT87ZKUkAhBA1SnZ2dqlvIBYVp9FoSE5O\nplmzZg99g7WoGOnjqiX9W/Wkjx+uou8AqGySAAghahS1Wi1XAKqAWq0mLy9P+rcKSR9XLenfqid9\n/PSQb0cIIYQQQohniCQAQgghhBBCPENkCpAQokbR19eXuadVQF9fH1NTU+nfKiR9XLX09fUxMjKq\n7jCEeCJIAiCEqFEsLCxk7mkVefnll6s7hBpP+rhqtWrVmrt386o7DCGqnSQAQogaZdL6/SRfv1Pd\nYQghnjD2VnVYMLgr+flydUUISQCEEDVKyo07JF29Xd1hCCGEEE8suU4uhBBCCCHEM0QSACGEEEII\nIZ4hkgAIIYQQQgjxDJEEQAghhBBCiGeIJACPWWhoKCEhIdUdxlNJqVRy7Nix6g6jzA4fPkyvXr1w\ncnIiLCzssbW7bNkyhgwZUqVtHDt2DIVCgUqlqtJ2hBBCCFH5nqoEIDAwEIVCwZYtW3SWZ2dn4+Tk\nhEKh4OLFi9UU3dOhpMHh5cuXH7nvKjOxiYmJwcvLq9jyhIQE2rdvD1R8AFpa3VVh9uzZ+Pv7c/Dg\nQcaOHauzbseOHSiVSu1Pu3bt6NSpk/Zz3759H0uMQgghhHj2PHWPAXVwcCAqKkpngBQXF4etrS3n\nzp2rxsiE0JWSksJLL71U4jofHx98fHy0n728vBg1ahQ9e/Z8XOEJIYQQ4hn1VF0BAHBxceHGjRv8\n/vvv2mVbtmyhT58+OuWuX7/OmDFj8PDwwMnJif79+/Pjjz9q1xcUFDBz5ky6deuGk5MTvr6+bNy4\nEYDMzEwmT56Mm5sbzs7O+Pv7s3v37jLVC3D16lVCQkLw8vLC2dmZgQMHcubMGe36wsJCZs2aRdeu\nXfHw8CAiIkK7rqQz2/eftd61axd9+/bF2dkZNzc3RowYoV139+5dlixZQs+ePXF1dWXo0KH8+eef\nwL2zzqtXr+bkyZPaM80nTpzQJlMDBw5EqVQyffp0ADZu3EjPnj1xcnLCw8OD0NDQMn9PgYGBzJ07\nlylTpuDi4oK3tzebN2/Wrr9y5QqjR4+mS5cuuLi40K9fP06cOMGJEyeYMWMG169f18a4Y8cOABQK\nBYmJidptAVxdXVEqlaxatUqnTJF/X914UN3Xrl1jypQpeHp64u7uzscff0xGRkap+1dYWMjatWvx\n9/fHxcWFt956i4SEBAAuXLiAUqmksLCQcePGafu5PM6fP689zjw9PZk5cya5ubna9bdv32bmzJn0\n6NEDJycnevfuzaFDh3TqWL58Od27d6dLly588cUXOseUQqFg48aNvPfeeyiVSvr3788vv/xSpv0r\nb38U2b59u/Z4+vDDD5k1axaBgYEAREdH07NnTzQajbZ8fn4+bm5u7Nu3r1x9J4QQQogHe+quABgY\nGODv78+WLVt49dVX+eWXX8jKysLJyYk5c+Zoy6nVavz8/Jg1axZGRkbExcUREhKCg4MDzz//PLGx\nsZw8eZJvv/2W+vXrk56ezvXr1wFYu3YtOTk5xMbGYm5uzpUrV8jLyytTvXl5ebz//vu0adOGb775\nhrp165KcnIypqak2tn379jFt2jQ++ugj/vjjDwIDA+nQoQMdOnR46P7n5ubyySefEB4ejqOjI3fv\n3uW3337Trp8xYwZXr15lxYoVWFpasmXLFj744AOio6Px8fHh4sWLHDlyhNWrV2u32bJlCz169GDj\nxo00adIEgIsXL7J48WLWrVtHixYtyMnJ0UliyiI2NpZ58+bxxRdfsG/fPiZNmkTHjh1p0qQJ4eHh\nPPfcc+zcuRMjIyMuXryIkZERjRo1YsqUKURERPDDDz+UWK+trS1Llixh+PDh7N+/H0PDsh3GCoWi\nxLrz8/MZMWIEzs7OREdHo9FomDFjBlOmTCEyMrLEur7++mu++eYbFi5cyAsvvMCePXsYP348a9eu\npVWrViQkJKBQKFi0aBEdO3YsV79lZGQwdOhQhgwZwrx588jOzubjjz9m3rx5/Pe//0Wj0TBhwgTM\nzc1ZsWIFDRs2JDU1lfz8fG0df/zxB126dCEuLo7Lly/z7rvv8uqrr+Ln56cts23bNubOnYudnR0L\nFy4kJCREmxA9bP/K2x/Hjx9nxowZLFiwgE6dOvHzzz8zceJEXn75ZQA8PT1ZsGABiYmJdOrUCYDd\nu3djbGyMi4tLufpPCCGEEA/21F0BAOjduzd79+4lMzOTLVu20Lt3b/T1dXfFxsYGd3d3zM3NMTIy\nwt/fn+bNm3P06FEAjIyMyMnJISkpiYKCAqysrLQDGyMjI27dukVycjIajQY7OzscHBzKVO/Bgwe5\nffs2ISEh1K9fH319fRwcHLCzs9PG1qZNGzw9PTEwMKBNmza0bNmSU6dOlXn/DQ0NOX/+PBkZGZiY\nmODo6AjArVu3iI2NZfLkydjY2GBoaMjAgQOpVasWBw4cKFcfGxgYoNFoOHfuHFlZWZibm9OuXbty\n1eHm5oajoyP6+vq4u7tTp04dbRJhaGhIeno6KSkp6Onp0axZMxo1alSu+itLfHw82dnZjBs3DjMz\nM8zNzRkzZgyJiYlcvXq1xG2ioqIICAigVatWGBoa4unpiVKpJCoq6pHjiYuLw97enrfffhtjY2Pq\n16/PiBEj+O677ygsLOTMmTP8+uuvTJs2DVtbW/T09GjcuLH2GIV7x2lAQABGRkY0bdoUR0fHYsfY\nO++8Q5MmTTA0NKR3796kpaVx48aNCu3fw8rHxcXRpUsXlEolBgYGODk5oVQqtdubmZnx5ptv6tS/\ndetW/P39MTAweOQ+FUIIIcT/eequAMC9wU379u1Zt24dP/30E+PGjaOgoECnzJ07dwgLCyMxMZHb\nt2+jp6dHbm4uN2/eBO7Nwc7IyCAsLIzk5GRee+01Ro0aRevWrQkICECtVjNt2jTS0tLo2LEjQUFB\nNGnS5KH1pqamYmtri7GxcanxW1tb63w2MzMjOzu7TPtuZmZGeHg4//vf/1i2bBnW1tb4+/szaNAg\nLl26BEBAQIDONiqVimvXrpWp/iKNGjVi5syZbN68menTp9OkSRPefvvtct1AW9J+5uTkADB+/HhW\nrlxJcHAwd+7cwcnJiTFjxmBpaVmuOCvDpUuXuHnzJq6urjrLjY2NSUtLw8bGptg2V69epXHjxjrL\n7O3tOX/+/CPHc/HiRc6cOVPszLeenh43btwgNTWVOnXqUL9+/VLrKMsx9u8yZmZmwL0b6i0tLcu9\nfw8rf+3aNZ5//nmd9XZ2dty6dUv7uW/fvgwcOJAbN25w+/ZtTp48yYwZM0rdRyGEEEJUzFOZAMC9\nwcKYMWNwd3fH2tqay5cv66xfvHgx58+f106R0NPTY8CAAdo5xgYGBgQEBBAQEEBOTg6RkZFMmDCB\nH374ATMzM0aOHMnIkSO5ffs2s2bNIjQ0lK+++uqh9drZ2XHlyhUKCgowMjIq936Zm5sD96b61K5d\nG0A7NamIQqFAoVCg0Wg4fvw4QUFBODg4aKfvbNq0CVtb2xLrv/9KCdwbWJakS5cudOnSBZVKxd69\ne/n4449p1aoVTZs2Lfd+3a9evXoEBwcTHBzMtWvX+OSTT1iwYAHTp08vMcayxmxubq4zV/7+viup\nbktLS2xtbYmJiSlz/DY2NqSkpOgsS0lJoWHDhmWuozSWlpa8/vrrfPnllyWut7Oz486dO2RkZDww\nCXgU5d2/h5V/7rnnSEtL01l/5coVnc/NmzenTZs2xMTEkJ6ejpOTU4nJlxBCCCEezVM5BQigc+fO\nRERE8OGHH5a4PisrC1NTU+rVq4dKpWLjxo0kJSVp1x85coTTp09TUFCAsbEx5ubm2sHh/v37OXfu\nHCqVClNTU0xMTLTTEB5Wr7OzM7Vr12bmzJlkZGSg0WhISkoqlqCUpmnTplhYWLB161bUajV//fWX\nzrSI9PR0fvzxRzIzM9HT06N27dro6elhYGCAnZ0dXbt2ZdasWdr2srOzSUhI0A6ELS0tSUtL4+7d\nu9o6i6YqXbhwQbssOTmZgwcPkpOTg6GhIbVq1QJKHkBXxM6dO7l06RJqtVo7naqojy0tLbl165bO\n2eH7WVlZAejEDNC6dWtiY2O5e/cuN27cYPny5TrrS6rbzc0NlUpFREQEmZmZANy8eZOdO3eW2r6/\nvz/r16/nr7/+QqVSsWvXLg4ePEivXr3K0w0l6tmzJ3/99Rfffvstubm5aDQa0tLStDfDtm7dmjZt\n2vDZZ59ppyilpqbqHIePqrz797Dyvr6+/PTTTxw6dIjCwkISEhI4ePBgsXr69+9PVFQUcXFxxW7s\nF0IIIUTleGqvAOjp6T3w5spRo0YxdepUPDw8sLCwwM/PjzZt2mjXZ2RkMHfuXC5fvoyhoSEvvPAC\nc+fOBe4NphYsWEB6ejrGxsa8+uqrfPrpp2Wq19TUlOXLlxMWFsaAAQPIzc2lcePGhIaG6twHUBoL\nCwumTp3KokWLWLFiBW3btqV3797aJ+hoNBq2bNnC9OnTKSgowNLSkg8++EB7A/H06dNZs2YNo0aN\nIj09HXNzc1599VUmT54MQPfu3dm9ezeenp6o1WrCwsJo27YtQUFBfP755+Tl5eHt7U3fvn1ZtWoV\nU6ZMQaPR0LBhQ6ZNm4a9vX05v6mSnT17lrCwMG7duoWpqSmOjo6MHz8egA4dOuDq6kqvXr0oLCzk\n448/xtvbW2f7pk2bMnDgQIYPH05BQQHvvfce7733HpMnT2bq1Km4ubnRqFEj3n33XQ4fPqzdrrS6\n16xZQ3h4OAMGDCAzM5P69evzxhtv4OnpWWL8b7/9Nmq1mo8++oiMjAzs7e2ZN28erVu3fuS+sbW1\n1cazcuVK8vLysLa2xsvLi65du6Knp8eCBQtYsmQJgwcPJjMzk+eee46PPvpI5z6AR1He/XtY+Xbt\n2vHxxx8za9Ysbt68SceOHfH29i52VaBLly7MmTMHCwsLOnfuXCn7IoQQQghdellZWZqHFxNCiMo1\nYcIEGjRowCeffKKzPCAgABcXF4YNG1au+tRqNWfPnmXe/hTOXrldmaEKIWoAB5u6bA72K/M9d6L8\niv4Ot2zZstJmDIj/c3//Pkp/y7cjhHgs9uzZQ1ZWFgUFBezcuZP4+PhiV3YOHjzIP//8I9N/hBBC\niCr01E4BEkI8XQ4cOMDnn39OQUEBtra2hIaG6jxa1tvbm7t37zJlypQqu7lZCCGEEJIACCEek6lT\npz5w/ffff/+YIhFCCCGebTIFSAghhBBCiGeIXAEQQtQojS3roFJXdxRCiCeNvVWd6g5BiCeGJABC\niBpl9juu8vQJIUSJCgpUaDSaUl8mKcSzQhIAIUSNkp2drX2pnKg8Go2G5ORkmjVrJoOnKiJ9XLU0\nGg3nzp2jefPm0r/imScJgBCiRlGr1XIFoAqo1Wry8vKkf6uQ9HHVUqvVFBQUVHcYQjwR5C+MEEII\nIYQQzxBJAIQQQgghhHiGyBQgIUSNoq+vL/N7q4C+vj6mpqbSv1VI+vjhNBpNdYcgRI0gCYAQokax\nsLCQ+dNV5OWXX67uEGo86ePSqQrV5N/NkyRAiEogCYAQokaZtH4/ydfvVHcYQohKZG9VhwWDu5Jf\n3YEIUUNIAiCEqFFSbtwh6ert6g5DCCGEeGLJdXIhhBBCCCGeIZIACCGEEEII8QyRBEAIIYQQQohn\niCQAQgghhBBCPEMkARBCCCGEEOIZIgnAE2D69OlMmzat2to/ceIESqWSwsLCx9puQUEBISEhdOnS\nBaVSSWZmZpW1pVAoSExMBEre33Xr1tG9e3eUSiUHDhyosjhWrVrFqFGjqqz+yvbvfiuvmJgYvLy8\nKjkiIYQQQjwqeQzoI/D19WXYsGH06tVLZ3lgYCCvv/46H3zwQZnqCQkJqYrwykyhUJCQkKD9vGzZ\nMo4cOcLq1aurtN09e/Zw9OhRvvvuO2rVqlVqucuXL7Ny5UoOHz7MrVu3qFu3Li+++CKDBg3C0dGx\n3O3ev7/Xrl0jLCyMdevWVflLeIYOHcrQoUMrtU6FQoGJiYn27aHW1tYMGDCAgQMHVmo7QgghhKgZ\nJAF4BhQUFGBkZFTdYRSTkpJC48aNHzj4T0pKYsiQIbzxxhtERERgb29Pfn4+Bw8eZNeuXRVKAO6X\nmpqKRqPhxRdfrHAd1d3HixYtomPHjmg0Gk6cOEFQUBBNmjShc+fOFaqvuvdHCCGEEFVHpgBVscuX\nL6NQKIiNjWXAgAE4OTkREBBAUlKStkxoaKj2KsCSJUt4//33deq4ceMGjo6OnDlzBrh3xnrKlCl4\nenri7u7Oxx9/TEZGhrZ8YGAgs2bNYvLkybi6ujJnzhwyMzOZPHkybm5uODs74+/vz+7duwE4duwY\nCoUClUrFjh07WL16NSdPnkSpVKJUKjlx4gRDhgxh+fLlOnHt3r0bDw8PCgoKStz3pKQkgoKCcHNz\nw8vLiy+++EI7zSc0NJQvv/xS205QUFCJdcybN4/nn3+emTNn0qxZMwwMDDAzM6Nbt2588sknAFy/\nfp0xY8bg4eGBk5MT/fv358cffyz1O/n3/kZHR2un5Li6uqJUKgG4e/cuYWFh9OjRA1dXV4YMGcLv\nv/+uraNoesumTZvw9fWla9euwL2z8Rs3buS9995DqVTSv39/fvnlF+12y5YtY8iQIdrPmzZtol+/\nfjg7O2v36d/fZXnp6enRrl07mjVrxt9//61dnpmZyYwZM/Dx8aFr166MHj2alJQU7frQ0FAmTZrE\njBkzcHNzY/z48cXqzs3NZcKECYwYMYLMzEwKCwtZv349vXv3xsXFhUGDBj1wutCDymdlZaFUKjl+\n/LjONrNmzWLChAkV7g8hhBBCFCcJwGMSFxdHeHg4e/bswcbGhhkzZpRYzt/fn+PHj5OamqpdFhsb\nS4sWLWjVqhX5+fmMGDECa2troqOjiY2NxcDAgClTpujUExMTQ48ePdi3bx8TJkxg7dq15OTkEBsb\ny4EDB4iIiMDBwaFY+z4+PgwZMoTXXnuNhIQEEhISUCgU9OvXj+3bt6NWq7Vlt27dSs+ePUs8U5yd\nnc3IkSNxcHAgLi6O9evXk5ycTGhoKABTp07VaSc8PLxYHXl5eRw9ehRfX98H9q1arcbPz4+YmBj2\n7dvHoEGDCAkJ4dy5cw/cDu7195IlSwDYv3+/dmrQokWLSEhIICIigt27d9O1a1dGjhzJ1atXtdve\nuHGDs2fPsnnzZp2EY9u2bUydOpX9+/fToUOHB07xsrKyYt68eezfv5+1a9dy8eJF5syZ89C4S6NW\nqzly5AgXLlzg9ddfB0Cj0fDhhx+SnZ3NN998w86dO2nRogVjx47VSd727dtH69at2blzJ3PnztWp\nNy0tjffee48GDRoQHh5O7dq1WbFiBXFxcSxYsICffvqJYcOGMX78eC5dulRibA8qX6tWLby8vIiK\nitKWz83NZceOHfTp06fC/SGEEEKI4iQBeEwCAwOxtrbGxMSEnj17cvr06RLL2dvbo1AoiI6O1i6L\njo7G398fgPj4eLKzsxk3bhxmZmaYm5szZswYEhMTdQanrq6uODk5oa+vj5mZGUZGRty6dYvk5GQ0\nGg12dnYlJgCl8fDw4O7du9oB8qVLlzh27Bi9e/cusXx8fDwFBQWMGTMGMzMzrK2tCQ4O5qeffiI9\nPb1Mbd65c4fCwkJsbGweWM7GxgZ3d3fMzc0xMjLC39+f5s2bc/To0TLv37+p1Wq2b9/OqFGjaNKk\nCUZGRrzzzjs0atSIHTt26JQNDg7G3NwcMzMz7bJ33nmHJk2aYGhoSO/evUlLS+PGjRsltuXu7k7T\npk3R19fHzs6OwYMHc/jw4XLHPGHCBFxcXOjcuTMjRoygV69evPbaawD8+eef/Prrr4SEhFC3bl2M\njY0JCgri8uXL/PHHH9o6WrVqhb+/P0ZGRjr78/vvv/Puu+/So0cPPvnkEwwN780c/PrrrxkzZgzN\nmjVDX18fNzc32rRpw86dO0uM8WHl+/Xrx549e7h16xYAO3fupG7duhWexiSEEEKIksk9AI/A0NAQ\nlUpVbLlKpdIOkopYW1tr/21mZkZeXl6J5QB69epFWFgYI0aM4Ndff+XatWt4e3sD9wbeN2/exNXV\nVWcbY2Nj0tLStINlOzs7nfUBAQGo1WqmTZtGWloaHTt21M4TL4uigfXWrVtxdnYmKiqKDh060Lhx\n4xLLp6WlYWtrq7N/9vb22nVWVlYPbbNOnToYGBjoJDYluXPnDmFhYSQmJnL79m309PTIzc3l5s2b\nZdq3+926dYu8vLxi+2Zvb09aWpr2c/369XUGykXu/67h3hURS0vLYmX37NnD+vXruXTpEvn5+ajV\nanJzcyksLMTAwKDMMS9YsEB7D8CFCxeYMGEC4eHhjB49mosXL1JYWFjiE3n+3beNGjUqse5vv/0W\nKysrnTPxN27cICsri0mTJqGnp6ddrlKptN/zv5Wl/EsvvcSLL77Id999x9tvv01UVBS9evXSKS+E\nEEKIRycJwCNo1KgRFy9e1FmmVqtJTU0tdWBcFm5ubsyePZtDhw6xc+dO3N3dqV27NgCWlpbY2toS\nExPzwDr09XUv7piZmTFy5EhGjhzJ7du3mTVrFqGhoXz11VcP3bZInz596NWrFykpKcTExDxwakvD\nhg1JS0vTSXKK5pw3bNjwgbEXMTU1pUOHDuzYsaPUKw0Aixcv5vz586xYsYKGDRuip6fHgAED0Gg0\nZWrnfvXq1cPExISUlBRatGihXZ6SkqLzlKDS+qmsrl69yqRJk/jiiy/o2rUrJiYm7N27l+Dg4ArH\nrqenR7NmzXB2diY+Pp7Ro0djZWWFkZERe/bseeCNvaUNtENCQoiKiuKDDz4gLCyM2rVrU7t2bUxM\nTFi0aBHt2rV7aFxlLd+vXz9Wr15N+/bt+fPPP1m4cOHDd1oIIYQQ5SJTgB6Bn58f27dvJzExEZVK\nRXZ2NkuXLkWj0eDk5FThek1MTPDx8WHDhg3s3btXO/0H7iUHKpWKiIgI7Q21N2/eLHXaRZH9+/dz\n7tw5VCoVpqammJiYlHqG2dLSkrS0NO7evauz3M7Ojo4dOzJx4kQMDQ1xcXEptT0nJycMDAwIDw8n\nLy+P9PR05s+fj4uLS5nO/hcJDg7mn3/+ISQkhAsXLlBYWEheXh579+5l+vTpwL0bSE1NTalXrx4q\nlYqNGzfq3GRdXvr6+vTs2ZPIyEhSUlIoKChgw4YNXLp0SXslpjLk5OSgVqu1CcfFixeLJWRFN5Ef\nO3aszPVeunSJ+Ph4WrZsCcDrr7+uvZG66KrInTt32LNnD7m5uQ+tz9TUlPnz59OoUSOGDRtGeno6\nxsbG9OnTh7CwMJKSktBoNOTl5XH8+HEuXLhQrI6ylu/WrRu3bt1i2rRpdO3atcSrJkIIIYR4NHIF\n4BF4enqSn5/PokWLSE1NxcTEhNatWxMZGUndunUfqW5/f38GDhxI06ZNdc6YWlhYsGbNGsLDwxkw\nYACZmZnUr1+fN954A09Pz1LrS01NZcGCBdrB26uvvsqnn35aYtnu3buze/duPD09UavVhIWF0bZt\nW+DeGdqxY8cSGBhY4vSlIrVq1SIyMpL58+fj7e2NsbExTk5OjB07tlz94ODgwNdff82KFSt4//33\nuXPnDnXr1uWll17i7bffBmDUqFFMnToVDw8PLCws8PPzo02bNuVq537jx48nMjKS4cOHk5WVRYsW\nLYiIiCjz1YuyaN68OaNHj+bTTz8lJyeHFi1a4OPjw6lTp7Rlrly5Qu3atbWD+dKMGzcOfX19NBoN\nderU0elrAwMDIiMjWbZsGQEBAdy6dYs6derQtm1b7VOPHsbQ0JBp06axYMEChgwZwtKlSxk/fjyb\nNm1i0qRJXL16FWNjY1566aUSnyAElKm8iYkJb775JuvXr2fcuHFlik0IIYQQ5aOXlZVVsbkG4pmU\nlJRE//79iY2NxdbWtrrDqfGKnrjz7rvvVncoj83mzZv53//+x7Zt28o1/1+tVnP27Fnm7U/h7JXb\nVRihEOJxc7Cpy+ZgP3Jycio8RbLob0TLli0feQqnKJn0cdW6v38fpb/lCoAos4KCAlavXo27u7sM\n/h+T0t6PUFPdvn2bb775hrfeektu/hVCCCGqiKRnokzi4+NxdXUlKSlJXswkqsSSJUvw9vamRYsW\n9OrVq7rDEUIIIWosuQIgysTZ2ZlDhw5VdxiiBhs9ejSjR4+u7jCEEEKIGk+uAAghhBBCCPEMkSsA\nQogapbFlHVTq6o5CCFGZ7K3qVHcIQtQokgAIIWqU2e+4ytMnhKiBVIWS2QtRWSQBEELUKNnZ2aW+\n5E5UnEajITk5mWbNmskTmqqI9PHDVfQRoEIIXZIACCFqFLVaLVcAqoBarSYvL0/6twpJHwshHhf5\nCyOEEEIIIcQzRBIAIYQQQgghniEyBUgIUaPo6+vL/OkqoK+vj6mpqfRvFarJfSxz94V4skgCIISo\nUSwsLGT+dBV5+eWXqzuEGq8m9rGqUE3+3TxJAoR4gkgCIISoUSat30/y9TvVHYYQgnvP718wuCv5\n1R2IEEKHJABCiBol5cYdkq7eru4whBBCiCeWXCcXQgghhBDiGSIJgBBCCCGEEM8QSQCEEEIIIYR4\nhkgCIIQQQgghxDNEEgDxxFq1ahWjRo2q7jC0li1bxpAhQ7SfAwMDWbp0aTVGVHZ9+/YlNja22tp/\n0r5LIYQQ4lkmCUAN9/fffzN58mS6d++OUqnE19eXjz/+mDNnzlR3aA81dOhQIiIiKrz9sWPHUCgU\neHt7U1hYqLMuMjIShUJBSEjIo4ZZZS5fvoxCoeDixYvF1ikUChITE8tc15YtW3jzzTcrM7xyuf+7\nfJqSJyGEEKKmkQSgBjt27BgBAQFYWlqyZs0aDh48yMaNG+nYsSO7d++uUJ0ajQaVSlXJkVYtCwsL\n4uPjtZ9VKhXR0dE8//zz1RhVzVJQUFDdIQghhBCijCQBqMGmT5+Ou7s7H330EXZ2dujp6VG7dm38\n/f0ZPXo0AP/88w/vv/8+bm5uuLi4EBAQwJEjR7R1FJ2Fjo6OZsCAAXTu3JnTp08TGBjI3LlzmTJl\nCi4uLnh7e7N582ad9n///XcCAwPp2rUrPj4+RERE6CQPf/zxB2+//TZOTk689dZbbNiwAYVCoV1/\n/5Sbu3fvsmTJEnr27ImrqytDhw7lzz//fGg/9OnThy1btmg/79+/H0tLS1q3bq1TrqL1F0lKSiIo\nKAg3Nze8vLz44osvyMzM1K4vS59VRExMDF5eXmzZsgVfX19cXFyYOHEiWVlZ2jK+vr5s27YNgMGD\nB7NixQqdOvbs2YObm5t2IP+w706hULBhwwYGDx5M586d2bt3L2fPnmXYsGG4uLjg6urKoEGDSE5O\nBnS/y+nTp/PLL7+wdu1alEolSqWSrKwslEolx48f14lr1qxZTJgw4ZH7SAghhBD/RxKAGurixYtc\nuHCBHj16PLTse++9x44dO9i9ezedO3cmODiYmzdv6pTZvn07YWFhHDx4kJdeegmA2NhY/P39+emn\nnwgODmb27Nna6SrJycmMGDGCvn378uOPP7Jy5Ur279/PmjVrAMjMzGT06NG4uLiwb98+vvjiC51B\neklmzJjBqVOnWLFiBXv27KFbt2588MEHOoPskvj6+nLy5ElSU1MB2Lx5M/369au0+gGys7MZOXIk\nDg4OxMXFsX79epKTkwkNDdUp96A+exQ3btwgOTmZrVu3snXrVv766y/Wr19fYll/f39iYmLQaDTa\nZdu2bcPX1xcjI6OHfndFoqKi+PTTT0lISMDV1ZWZM2fi6OjI3r172bNnD6GhodSuXbtY+yEhIbRt\n25Z3332XhIQEEhISqFWrFl5eXkRFRWnL5ebmsmPHDvr06fPI/SOEEEKI/yMJQA1VNIB/7rnnHliu\nRYsWdOrUCVNTU4yNjRkxYgRw7wzwvwUGBtKwYUMMDAwwNjYGwM3NDUdHR/T19XF3d6dOnTraewu+\n/fZbXFxc8PT0xNDQEDs7O959911iYmIAOHDgAIaGhgwbNgwjIyOaN2/OwIEDS43z1q1bxMbGMnny\nZGxsbDA0NGTgwIHUqlWLAwcOPHAfzc3N6d69O1FRUVy4cIEzZ87g5eVVafUDxMfHU1BQwJgxYzAz\nM8Pa2prg4GB++ukn0tPTteUe1GePwsDAgLFjx2Jqaoq1tTVdunTh1KlTJZb19PTk1q1b2is9aWlp\nHD58mF69egEP/+6KDBo0CAcHB/T09DA1NcXIyIi0tDSuXLmCoaEhL774IpaWlmXeh379+rFnzx5u\n3boFwM6dO6lbty6dO3euQI8IIYQQojSG1R2AqBoNGjQA4Nq1azg4OJRa7sqVK4SFhXHy5EkyMzPR\n09MjOzubjIwMnXKNGjUqtq21tbXOZzMzM3JycoB7VyCOHTuGi4uLdr1Go0GtVgNw/fp1bGxs0Nf/\nvxzUzs6u1DgvXboEQEBAgM5ylUrFtWvXSt2uSN++fQkKCiI7Oxtvb2/MzMwqtf60tDRsbW0xNPy/\nXyl7e3vtOisrK+DBfXa/orruv+eiaJrOv9uqV68eRkZGZarXzMyM7t27Ex0dTceOHdm+fTuvvPKK\n9jh52HdX5P5j4rPPPmPVqlW8//77qNVq3N3d+eCDDzA3Ny8xjvu99NJLvPjii3z33Xe8/fbbREVF\n0atXL/T09Mq0vRBCCCHKRhKAGqpJkyY0bdqUuLg4OnXqVGq5zz//nNq1a7N+/XosLS3RaDS4urrq\nTA8Byj0Is7S0xMvLi88++6zE9dbW1ly9ehW1Wq1NAq5cufLA+gA2bdqEra1tuWKBe4NLOzs7Nm/e\nzKZNmyq9/oYNG5KWloZKpdIOzFNSUrTrKsLKygoTExMuXbqkk8QVJSuNGzeuUL0AvXr1YtiwYWRk\nZBATE0NgYKB23cO+uyL/Tt7gXgL33//+F7iXREyYMAEzMzOCgoKKbVva8dSvXz9Wr15N+/bt+fPP\nP1m4cGE590wIIYQQDyNTgGqwkJAQdu/ezfz587l8+TIajYasrCy+++47wsPDAcjKysLMzIw6deqQ\nm5vLkiVLyM3NfeS2+/fvz549e/jxxx8pKCigsLCQixcvkpCQAICLiwsFBQWsXr2agoICLly4wMaN\nG0utz87Ojq5duzJr1iwuX74M3Jt3n5CQwPXr18sU0/Tp0/nyyy9p0aJFpdfv5OSEgYEB4eHh5OXl\nkZ6ezvz583FxcdGe/S8vfX193nzzTZYtW8b58+fRaDRcu3aN+fPn06lTJ2xsbCpUL8Arr7xCkyZN\n+Oyzz7hz5w6enp7adQ/77koTExPD1atX0Wg01KpVCwMDAwwMDEosa2VlVeK9D926dePWrVtMmzaN\nrl27lmsKkRBCCCHKRhKAGqx9+/asXbuWa9euERAQgJOTEwMGDODQoUN4eHgAMHHiRM6ePYurqyt9\n+vThueeee+h9A2Xx8ssvExERwbZt2/D09KRr165MnDhRe5a/du3aLF68mH379tGlSxemTJmCn5+f\n9v6CkkyfPp1WrVoxatQonJyc6NWrl85Now9jb29Pu3btqqT+WrVqERkZydmzZ/H29uatt97C3t6e\nadOmlTm+kkyYMAFnZ2fGjx+Ps7Mz7733Ho0aNWLGjBmPVC/cuwoQHx9P9+7ddaZEPey7K82xY8d4\n5513UCqVDBw4kNdee43BgweXWPbtt98mOTkZV1dXnalGJiYmvPnmm/z5559y868QQghRRfSysrI0\nDy8mRNX73//+x5YtW7SPqxTPps2bN/O///2Pbdu2lWvqmVqt5uzZs8zbn8LZK7erMEIhRFk52NRl\nc7AfOTk5xaaWPm5FfyNatmxZbAqjqBzSx1Xr/v59lP6Wb0dUm8TERNLS0tBoNJw+fZr169fj7e1d\n3WGJanT79m2++eYb3nrrLbn5VwghhKgichOwqDbJycn897//JSsri/r16+Pj41PqlBFR8y1ZsoRv\nvvlGO/1KCCGEEFVDEgBRbQYMGMCAAQOqOwzxhBg9erT2DdVCCCGEqDoyBUgIIYQQQohniFwBEELU\nKI0t66BSP7ycEKLq2VvVqe4QhBAlkARACFGjzH7HVZ4+IcQTRFUoGbkQTxpJAIQQNUp2dnapLyAT\nFafRaEhOTqZZs2byhKYqUpP7uLofASqE0FWhBEClUmFoKLmDEOLJo1ar5QpAFVCr1eTl5Un/ViHp\nYyHE41KhvzDe3t6Eh4dz+fLlyo5HCCGEEEIIUYUqlABMmjSJ06dP4+/vT1BQEPv370etljl+Qggh\nhBBCPOkqNI/Hw8MDDw8PLl26RFRUFJ9//jlGRkb4+/vj7++PjY1NZccphBBloq+vX+PmTz8J9PX1\nMTU1lf6tQvr6+hgZGVV3GEKIZ4BeVlbWI9+Zk5qaysSJE/nzzz8xMDDAw8OD8ePHY21tXRkxCiHE\nQ6nVas6ePUvbtm1l/rR4ahUUqLh7N0+SrCpQ9DeiZcuW8jeiikgfV637+/dR+vuR7uRNSEhg69at\n/Pzzzzg6OhIWFkajRo1YtWoV48ePZ8OGDY9SvRBClNuk9ftJvn6nusMQotzsreqwYHBX8vNl8C+E\nqFoVSgBWrFhBdHQ0+fn59OzZk+DgYOzs7LTrQ0ND6dKlS2XFKIQQZZZy4w5JV29XdxhCCCHEE6tC\nCcDhw4cZPXo07u7uJc5XNDIyYvbs2Y8cnBBCCCGEEKJyVWiC1ujRo/Hy8io2+P/tt9+0/3Zycnq0\nyIQQQgghhBCVrsIJQEnGjh37SMEIIYQQQgghqlaFEoCSXumdn58vTy0QQgghhBDiCVeuewCGDBmC\nnp4e+fn5DB06VGddWloarVq1qtTghBBCCCGEEJWrXAlAx44dAfjjjz9wdHTULtfX18fS0pLu3btX\nbnRCPGbTp0+nsLCQTz/9tFraP3HiBKNHj+bAgQMYGBg8tnYLCgr47LPPSEhIoKCggB9++IHatWs/\ntvZjYmKIiIjghx9+eGxtCiGEEM+qciUA77//PgBNmjTB29u7SgISoiJ8fX0ZNmwYvXr10lkeGBjI\n66+/zgcffFCmekJCQqoivDJTKBQkJCRoPy9btowjR46wevXqKm13z549HD16lO+++45atWqVWKa0\nvgwNDUWlUjF9+nTg3j5ERkZqTxgIIYQQ4slS5gRAo9Fo5/h7enqiVqtLLCdvfhOidAUFBSU+Ore6\npaSk0Lhx41IH/0IIIYSoOco8WndxcdH+u0OHDjg6Opb4I8ST6vLlyygUCmJjYxkwYABOTk4EBASQ\nlJSkLRMaGqq9CrBkyRLtVa8iN27cwNHRkTNnzgBw7do1pkyZgqenJ+7u7nz88cdkZGRoywcGBjJr\n1iwmT56Mq6src+bMITMzk8mTJ+Pm5oazszP+/v7s3r0bgGPHjqFQKFCpVOzYsYPVq1dz8uRJlEol\nSqWSEydOMGTIEJYvX64T1+7du/Hw8KCgoKDEfU9KSiIoKAg3Nze8vLz44osvyMzM1O7zl19+qW0n\nKCiown3ct29fAMaNG6dT148//sigQYNwdXXFzc2NcePGkZqaWmz7LVu24Ovri4uLCxMnTiQrK6vC\nsQghhBCiZGW+ArB48WLtv5cvXy5P/BFPrbi4OMLDw6lTpw6ffPIJM2bMYOXKlcXK+fv7s3btWlJT\nU2nUqBEAsbGxtGjRglatWpGfn8+IESNwdnYmOjoajUbDjBkzmDJlCpGRkdp6YmJimDNnDjNmzODu\n3busWrWKnJwcYmNjMTc358qVK+Tl5RVr38fHh4sXLxabAtSvXz+WLFlCYGCg9orb1q1b6dmzZ4lX\nF7Kzsxk5ciSenp7MnTuXrKwsPv74Y0JDQ1mwYAFTp07F1ta2UqYabdmyBYVCwaJFi3SmAJmbm/PZ\nZ5/x/PPPc+fOHT777DOmTJnC2rVrtWVu3LhBcnIyW7duJTMzk2HDhrF+/XpGjhz5SDEJIYQQQleZ\nrwC0bdtW++/27dvTrl27En+EeNIFBgZibW2NiYkJPXv25PTp0yWWs7e3R6FQEB0drV0WHR2Nv78/\nAPHx8WRnZzNu3DjMzMwwNzdnzJgxJCYmcvXqVe02rq6uODk5oa+vj5mZGUZGRty6dYvk5GQ0Gg12\ndnY4ODiUOX4PDw/u3r2rvVfg0qVLHDt2jN69e5dYPj4+noKCAsaMGYOZmRnW1tYEBwfz008/kZ6e\nXuZ2H4VSqaRly5YYGBhQv359Ro4cye+//052dra2jIGBAWPHjsXU1BRra2u6dOnCqVOnHkt8Qggh\nxLOkXDcBF9mzZw8ODg40b96cS5cuERoaiqGhIZ9++imNGzeu7BiFeChDQ0NUKlWx5SqVCkND3cPc\n2tpa+28zMzPy8vJKLAfQq1cvwsLCGDFiBL/++ivXrl3T3gB/6dIlbt68iaurq842xsbGpKWlYWNj\nA4CdnZ3O+oCAANRqNdOmTSMtLY2OHTsSFBREkyZNyrSvRkZG+Pv7s3XrVpydnYmKiqJDhw6l/u6l\npaVha2urs3/29vbadVZWVmVqtzx9fL/jx4/z5Zdfcv78eXJzc7XLb968iYWFBQD16tXTuYJhZmZG\nTk5OmWITQgghRNlV6I7dpUuXYmZmBkB4eDgNGzakUaNGzJ07t1KDE6KsGjVqxMWLF3WWqdVqUlNT\nHykpdXNzIy8vj0OHDrFt2zbc3d21j8e0tLTE1taWAwcO6PwcPnyYNm3aaOu4/8Z4MzMzRo4cyaZN\nm4iJicHAwIDQ0NAS2y/tpvo+ffrw888/k5KSQkxMjHbufUkaNmxIWlqazuA9JSVFu66sSupjgIsX\nL2oTCqDY9MCCggLGjh1L586d2bZtG/Hx8axYsQIo+aWCQgghhKhaFUoA0tPTadiwIRqNhiNHjvDx\nxx8zefJkfv/998qOT4gy8fPzY/v27SQmJqJSqcjOzmbp0qVoNBqcnJwqXK+JiQk+Pj5s2LCBvXv3\naqf/wL3kQKVSERERob2h9ubNm+zcufOBde7fv59z586hUqkwNTXFxMSk1Gf+W1pakpaWxt27d3WW\n29nZ0bFjRyZOnIihoaHOTfr3c3JywsDAgPDwcPLy8khPT2f+/Pm4uLiU+ew/wJtvvsnBgwfZtWsX\nBQUF5OXlsWnTJs6dO6fzDhBLS0uSk5O1nwsKCrh79y516tTBwsKC69evExERUeZ2hRBCCFG5KpQA\nGBoakpuby5kzZ7CxsaF27doYGhqW+gQSIaqap6cnH330EYsWLcLNzQ1/f3/++ecfIiMjqVu37iPV\n7e/vz9GjR7GxsdG5z8XCwoI1a9aQlpbGgAEDcHZ2ZvDgwZw4ceKB9aWmpjJhwgRcXV3x8vLi5s2b\npb54rHv37jRt2hRPT09cXFz45ZdftOv69evHn3/+ib+//wOn4NSqVYvIyEjOnj2Lt7c3b731Fvb2\n9kybNq1c/dCmTRvmzZvH119/Tffu3fHx8WHPnj1EREToTF8aPXo0a9euxcXFhTFjxmBubs5///tf\nVq5cqX0ykIeHR7naFkIIIUTl0cvKyir3NfjJkyeTm5vL7du36dSpEyNGjCApKYkJEybo3DAphKg6\nSUlJ9O/fn9jYWGxtbas7nGqnVqs5e/Ys8/ancPbK7eoOR4hyc7Cpy+ZgP52b40XlKfob0bJlS3ln\nURWRPq5a9/fvo/R3hb6dkJAQWrZsSefOnXnvvfeAezdEDhgwoCLVCSHKqaCggNWrV+Pu7i6DfyGE\nEEKUS7mfAlRQUEB4eDgTJkzAxMREu/z+J6EIIapGfHw8kyZNolmzZixcuLC6wxFCCCHEU6bcVwCM\njIzYuXOnzuBfCPH4ODs7c+jQIb7++mvto0aFEEIIIcqqQlOA3njjDQ4dOlTZsQghhBBCCCGqWIVe\nBFavXj0mTpyIq6srdnZ2OjcejBw5stKCE0KI8mpsWQeVurqjEKL87K3qVHcIQohnRIUSgHPnztG6\ndWuuX7/O9evXKzsmIYSosNnvuMrTJ8RTq6BAhUajKfZCPSGEqEwVSgC+/PLLyo5DCCEqRXZ2dqkv\nVhMVp9FoSE5OplmzZjI4rSIajYZz587RvHlz6WMhRJWqUAJQ5Pr161y5coXXXnutsuIRQohHolar\n5QpAFVCr1eTl5Un/ViG1Wi0v1BRCPBYV+iuekZHBqFGj8PLyYsSIEQDs2rWL2bNnV2pwQgghhBBC\niMpVoQRg3rx5WFlZ8f3332NkZARA+/bt+fnnnys1OCGEEEIIIUTlqtAUoCNHjhATE4OZmZl2nmKD\nBg24efNmpQYnhBDlpa+vL/Onq4C+vj6mpqbSvw+g0WiqOwQhhCiTCiUABgYGxeaAZmVlUatWrUoJ\nSgghKsrCwkLmqFeRl19+ubpDeGKpCtXk382TJEAI8VSoUALQrl07li1bxtixY7XL1q9fT4cOHSot\nMCGEqIhJ6/eTfP1OdYchniH2VnVYMLgr+dUdiBBClFGFEoBx48bx/vvv88MPP5CTk4Ofnx8qlYo1\na9ZUcnhCCFE+KTfukHT1dnWHIYQQQjyxKpQAWFtbs2nTJg4cOMClS5ewsrLCzc0Nc3Pzyo5PCCGE\nEEIIUYkqlAD89ddfvPjii7i7u1d2PEIIIYQQQogqVKE75QICAnjrrbfYsmUL2dnZlR2TEEIIIYQQ\noopUKAH4/vvv6datG//73//o3r07oaGh/PLLL5UdmxBCCCGEEKKSVSgBaNCgAYMHD2bbtm0sXrwY\ntVpNUFAQffr0qez4xFNo+vTpTJs2rdraP3HiBEqlksLCwsfabkFBASEhIXTp0gWlUklmZuZjbf9+\nly9fRqFQcPHixVLLVPd3JYQQQojH75Eflq1QKPD09OTVV1/lwoULlRGTqCa+vr5s27at2PLAwECW\nLl1a5npCQkL49NNPKzO0clEoFCQkJGBgYADAsmXLGDJkSJW3u2fPHo4ePcp3331HQkICtWvX1lm/\nf/9+HB0dycrK0i5LSUlBoVDw2Wef6ZSdP38+7733XpXHXBXfVWnHkRBCCCGeDBVOAC5fvkxkZCS+\nvr58+umnPP/883zzzTeVGZsQJSooKKjuEEqUkpJC48aNS30hXvv27QE4fvy4dtnhw4dp0aIFR44c\n0SmbmJhIp06dqi5YIYQQQjyzKpQAjBgxAn9/f3799VfGjBnDDz/8wEcffcQLL7xQ2fGJJ0zRtJLY\n2FgGDBiAk5MTAQEBJCUlacuEhoYSEhICwJIlS3j//fd16rhx4waOjo6cOXMGgGvXrjFlyhQ8PT1x\nd3fn448/JiMjQ1s+MDCQWbNmMXnyZFxdXZkzZw6ZmZlMnjwZNzc3nJ2d8ff3Z/fu3QAcO3YMhUKB\nSqVix44drF69mpMnT6JUKlEqlZw4cYIhQ4awfPlynbh2796Nh4dHqQlGUlISQUFBuLm54eXlxRdf\nfKGd5hMaGsqXX36pbScoKKjY9hYWFrz66qscPnxYuywxMZEBAwagUqlITk4G4Pr16/zzzz906tSJ\n69evM2bMGDw8PHBycqJ///78+OOP2u0LCgqYOXMm3bp1w8nJCV9fXzZu3KjT7m+//Vam7wrunb3/\n8ssvGT16NE5OTvTs2ZO9e/dq12s0Gr766it8fHxwcXFh2rRpTJo0idDQUACCgoJIS0tj9uzZKJVK\n+vbtC0BhYSFr167F398fFxcX3nrrLRISErT1Fn1nu3fvxt/fHycnJ0aOHMm1a9dK/C6EEEIIUXEV\nSgBeeeUVoqKiWL58OV5eXhgbG1d2XOIJFxcXR3h4OHv27MHGxoYZM2aUWM7f35/jx4+TmpqqXRYb\nG0uLFi1o1aoV+fn5jBgxAmtra6Kjo4mNjcXAwIApU6bo1BMTE0OPHj3Yt28fEyZMYO3ateTk5BAb\nG8uBAweIiIjAwcGhWPs+Pj4MGTKE1157jYSEBBISElAoFPTr14/t27ejVqu1Zbdu3UrPnj0xMjIq\nVk92djYjR47EwcGBuLg41q9fT3JysnbgO3XqVJ12wsPDS+yPN954g8TERADUajVHjx6lY8eOdOjQ\nQZsYJCYmUqtWLV5++WXUajV+fn7ExMSwb98+Bg0aREhICOfOndP25cmTJ/n22285ePAga9eupU2b\nNhX6ropER0czatQoDhw4QP/+/QkNDdVOW4qLi2PdunXMnj2bvXv38tprr7Fv3z7ttuHh4TRs2JBJ\nkyaRkJDAli1bAPj666/55ptvmDlzJnv37iUgIIDx48drk8Ai+/btY/369Xz//ffk5eWV2o9CCCGE\nqLgKJQBBQUE0bty4smMRT5HAwECsra0xMTGhZ8+enD59usRy9vb2KBQKoqOjtcuio6Px9/cHID4+\nnuzsbMaNG4eZmRnm5uaMGTOGxMRErl69qt3G1dUVJycn9PX1MTMzw8jIiFu3bpGcnIxGo8HOzq7E\nBKA0Hh4e3L17V3sW+tKlSxw7dozevXuXWD4+Pp6CggLGjBmDmZkZ1tbWBAcH89NPP5Genl7mdjt1\n6kRycjJpaWmcPn2a2rVr07hxYzp27KhNDBITE+nQoQOGhobY2Njg7u6Oubk5RkZG+Pv707x5c44e\nPQqAkZEROTk5JCUlUVBQgJWVFa1atdJps6zfVRF/f39atWqFvr4+ffr0ITs7m/PnzwPw3Xff4efn\nx6uvvoqhoSH+/v5luvIXFRVFQEAArVq1wtDQEE9PT5RKJVFRUTrlgoKCqF27NrVr18bLy4s//vij\nzH0rhBBCiLIp84vAPv/8c/773/8CaP9bWjnxdDI0NESlUhVbrlKpMDTUPVSsra21/zYzMyMvL6/E\ncgC9evUiLCyMESNG8Ouvv3Lt2jW8vb2BewPvmzdv4urqqrONsbExaWlp2NjYAGBnZ6ezPiAgALVa\nzbRp00hLS6Njx44EBQXRpEmTMu1r0WB669atODs7ExUVRYcOHUpNbNPS0rC1tdXZP3t7e+06Kyur\nMrXbunVr6tSpw+HDh0lPT8fR0REAR0dH5s2bR0FBAYmJiQwbNgyAO3fuEBYWRmJiIrdv30ZPT4/c\n3Fxu3rwJ3LvCkZGRQVhYGMnJybz22muMGjWK1q1ba9ssz3dVUnmAnJwc4N50ra5du+qUv/+7KcnV\nq1eL9a29vb02sSit7aJ2hRBCCFF5ynwFoOiJKgD6+vql/oinV6NGjYo9MlKtVpOamvpIV3zc3NzI\ny8vj0KFDbNu2DXd3d+0TciwtLbG1teXAgQM6P4cPH9aZynL/sWVmZsbIkSPZtGkTMTExGBgYaKfj\n3K+047JPnz78/PPPpKSkEBMTo52vXpKGDRuSlpamkyClpKRo15WVvr4+jo6OJCYmkpiYSMeOHbV1\nWFpasn37dtLT07U3AC9evJjz58+zYsUKbd84ODig0WiAe7+XAQEBrFu3jh9++IHmzZszYcKEMsdT\nXs899xxXrlzRWXb/55L628bGRttfRVJSUsrVd0IIIYSoHGUesf97TvbUqVNL/RFPLz8/P7Zv305i\nYiIqlYrs7GyWLl2KRqPBycmpwvWamJjg4+PDhg0b2Lt3r3b6D9xLDlQqFREREdobam/evMnOnTsf\nWOf+/fs5d+4cKpUKU1NTTExMdJLUf7O0tCQtLY27d+/qLLezs6Njx45MnDgRQ0NDXFxcSm3PyckJ\nAwMDwsPDycvLIz09nfnz5+Pi4lLms/9FOnXqRGJiIn/88Yf2CgDcuwrw5ZdfYmdnp72SkZWVhamp\nKfXq1UOlUrFx40adm3iPHDnC6dOnKSgowNjYGHNz8ypNxH19fYmJieHUqVOoVCq2b9/O2bNndcpY\nWlpqb2gu4u/vz/r16/nrr79QqVTs2rWLgwcP0qtXryqLVQghhBAlK/MUoNL8+yZKKP1sq3jyeXp6\nkp+fz6JFi0hNTcXExITWrVsTGRlJ3bp1H6luf39/Bg4cSNOmTWnXrp12uYWFBWvWrCE8PJwBAwaQ\nmZlJ/fr1eeONN/D09Cy1vtTUVBYsWEB6ejrGxsa8+uqrpT7Pvnv37uzevRtPT0/UajVhYWG0bdsW\ngH79+jF27FgCAwNLnRIDUKtWLSIjI5k/fz7e3t4YGxvj5OTE2LFjy90XnTp14osvvuCll16iXr16\n2uWOjo5s3rxZZ1A8atQopk6dioeHBxYWFvj5+elcGcnIyGDu3LlcvnwZQ0NDXnjhBebOnVvumMqq\nR48eXL16leDgYLKzs3F3d8fZ2VnnQQCBgYHMnTuXbdu20bBhQ7799lvefvtt1Go1H330ERkZGdjb\n2zNv3jydqUpCCCGEeDz0srKyNOXdKCkpiVmzZnHq1KliZ1WPHTtWacEJUdWSkpLo378/sbGx2Nra\nVnc4T6WBAwfSvXv3x/KytQdRq9WcPXuWeftTOHvldrXGIp4tDjZ12RzsR05OjnZ6XkUUHcMtW7aU\nk2lVQPq36kkfV637+/dR+rtCVwCmTZvGc889x+zZs7U3CQrxtCkoKGD16tW4u7vL4L8cdu7ciaur\nK3p6emzevJmkpCQ8PDyqOywhhBBClFGFEoBz586xYsWKEp+XLsTTID4+nkmTJtGsWTMWLlxY3eE8\nVbZt28b06dNRq9U0adKEhQsXlvnpS0IIIYSofhVKABo1akRmZiYNGjSo7HiEeCycnZ05dOhQdYfx\nVFq2bFl1hyCEEEKIR1ChBODtt9/mk08+Yfjw4cWegCIvCBNCCCGEEOLJVaEEoOh560VvLi2ip6cn\nNwELIYQQQgjxBKtQAhAbG1vZcQghRKVobFkHlfrh5YSoLPZWdao7BCGEKJdyJQCRkZHFKzA0xN7e\nHqVSqX27qxBCVJfZ77jK4+fEY6cqlKxTCPH0KFcC8MsvvxRbplKp2Lx5MwsWLGDZsmU4ODhUWnBC\nCFFe2dnZpb4VWlScRqMhOTmZZs2aoaenV93hPJEe5R0AQgjxOJUrAfjyyy9LXK7RaAgPD2fJkiXy\nSEUhRLVSq9VyBaAKqNVq8vLypH+FEKIGqJS/4np6egwZMoRTp05VRnVCCCGEEEKIKlKhm4BLYmpq\nSn5+fmVVJ4QQFaKvry9TVKqAvr4+pqam0r8PIFOAhBBPi0pLAI4dO4adnV1lVSeEEBViYWEhU1Sq\nyMsvv1zdITyxVIVq8u/mSRIghHgqlCsBiI6OLrZMpVJx6dIltm/fTnBwcGXFJYQQFTJp/X6Sr9+p\n7jDEM8Teqg4LBndFroELIZ4W5UoAVq5cWbwCQ0MaNWrElClT6N69e6UFJoQQFZFy4w5JV29XdxhC\nCCHEE6tcCcB3331XVXEIIYQQQgghHgOZKCuEEEIIIcQzRBIAIYQQQgghniGSAAghhBBCCPEMkQRA\nCCGEEEKIZ8hTnQBMnz6dadOmVVv7J06cQKlUUlhY+FjbLSgoICQkhC5duqBUKsnMzHzoNoGBgSxd\nulT7WaFQkJiYCFTNfgQFBbFixYpKq6+iYmJi8PLyqu4wKuz+7+1pceXKFZRKJSkpKdUdihBCCCHu\nU2kvAisPX19fhg0bRq9evXSWBwYG8vrrr/PBBx+UqZ6QkJCqCK/MFAoFCQkJ2s/Lli3jyJEjrF69\nukrb3bNnD0ePHuW7776jVq1aJZYJDQ1FpVIxffr0h9Z3/35UhvDw8Eqrq7Tjojz7+KSKiYlh69at\nnDt3DgMDA2xsbHBzc+Ott96idu3a1R1ehdna2lb6MSWEEEKIylEtCcDToqCgACMjo+oOo5iUlBQa\nN25c6uBf3FNQUFDdITzQ9OnT+emnn/jwww9RKpXUrl2b5ORkNm7cyN9//41CoajuEIUQQghRAz2x\nCcDly5fp0aMHU6dOZcOGDaSmpuLg4MBnn32Gg4MDoHsGeMmSJfzxxx8sX75cW8eNGzfw9vZm7dq1\ntGrVimvXrrFo0SKOHz+OSqXC0dGRiRMnUr9+feDemebnn3+eW7du8fPPP9O9e3fGjBnD9OnTOXLk\nCAUFBVhaWhIUFISHhwfHjh1j+PDhHDlyhF27drF69WrUajVKpRKAJUuWEB4eTseOHXn//fe1ce3e\nvZtZs2bx/fffl5hgJCUlsWDBAk6fPo2xsTFOTk6MHTuW2rVrExoayvfff69tp23bto98tv3f+2Fo\naKi9ktGxY0e2bt1Kfn4+Hh4eTJ48GUNDw4fGWNSXRWftCwoKmDdvHnv37iU3N5e6devyzjvvMHDg\nwEeK+34KhYIJEyawe/duzp49S2hoqHbd119/zbp167h79y6urq5MnDgRc3NzACIjI9m5cyfp6enU\nrl2bLl26MGbMGMzMzIB7x9ndu3epV68eO3fuxMDAgN69ezNq1CgA7t69y3//+19+++03srOzsba2\nZuDAgQwYMKDUWH/77Te2bt1KZGQkHTt21C5v1qwZkydP1imbk5PDlClTOHjwIBYWFgwZMoR+/foB\ncP36dT7//HNOnz5NXl4ednZ2BAYG0q1bN51+CQ4OZufOnfz999/Y29vzxRdfkJycTEREBOnp6XTq\n1ImpU6dq+8TX15cePXrwyy+/cOrUKezs7Bg/fjydO3cG4J9//mHu3Ln8/fffqFQqmjVrRlBQEI6O\njsD//f5GR0fTpEkTNBoNa9asYfPmzWRlZeHh4UF2djampqZMnTpV26afnx+///47v/zyCw0aNGDc\nuHG4ublV4GgQQgghRGme+HsA4uLiCA8PZ8+ePdjY2DBjxowSy/n7+3P8+HFSU1O1y2JjY2nRogWt\nWrUiPz+fESNGYG1tTXR0NLGxsRgYGDBlyhSdemJiYujRowf79u1jwoQJrF27lpycHGJjYzlw4AAR\nERHaBOTffHx8GDJkCK+99hoJCQkkJCSgUCjo168f27dvR61Wa8tu3bqVnj17ljj4z87OZuTIkTg4\nOBAXF8f69etJTk7WDmanTp2q005lTrX5tz/++AMzMzPi4uJYu3Ytu3fvJi4urkwx3i82NpaTJ0/y\n7bffcvDgQdauXUubNm2qJO6oqCg+/fRTEhIScHV1Be4lgn/99Rfbtm1j06ZN/PPPP8yfP1+7jb29\nPZGRkcTHxxMeHk5CQkKxt17v27ePtm3bsnv3bubPn8+aNWs4evQoABqNBqVSyZYtWzhw4AATJkxg\nwYIFHDp0qNQ44+Pjsba21hn8lyY2NhZ/f39++ukngoODmT17NhcvXgRArVbj5+dHTEwM+/btY9Cg\nQYSEhHDu3LlidcyYMYP9+/fTrFkzPvzwQw4ePMiGDRuIjo7mr7/+YuPGjTrbbN68mVGjRrF//37e\neustxo8fr/P79d5777Fjxw52795N586dCQ4O5ubNmyXuQ1xcHOvWrWP27Nns3buX1157jX379hUr\nFx0dzahRozhw4AD9+/cnNDSUrKysh/aREEIIIcruiU8AAgMDsba2xsTEhJ49e3L69OkSy9nb26NQ\nKIiOjtYui46Oxt/fH7g34MrOzmbcuHGYmZlhbm7OmDFjSExM5OrVq9ptXF1dcXJyQl9fHzMzM4yM\njLh16xbJycloNBrs7OxKTABK4+Hhwd27d7XzoS9dusSxY8fo3bt3ieXj4+MpKCjQnoG2trYmODiY\nn376ifT09DK3+6hsbGwICAjAyMiIpk2b4ujoyKlTpyoUo5GRETk5OSQlJVFQUICVlRWtWrWqkrgH\nDRqEg4MDenp6mJqaAvcG6MHBwZiZmfHcc88xcuRIYmNjtTc99+jRA1tbW/T09Hj++efp378/P//8\ns069bdq0wdPTEwMDA9q0aUPLli21/WFqaoqfnx+1a9dGX18fZ2dnOnfuzOHDh0uNMyMjAxsbmzLt\nk5ubG46Ojujr6+Pu7k6dOnU4c+YMcO97cnd3x9zcHCMjI/z9/WnevLk2OSny1ltv0ahRI4yMjPD2\n9iYlJYWgoCAsLCywtLREqVRq96dIjx49eP311zE0NMTf358XX3yRHTt2ANCiRQs6deqEqakpxsbG\njBgxAoDff/+9xH347rvv8PPz49VXX9XW98ILLxQr5+/vT6tWrdDX16dPnz5kZ2dz/vz5MvWTEEII\nIcqmWqYAGRoaolKpii1XqVTaKSZFrK2ttf82MzMjLy+vxHIAvXr1IiwsjBEjRvDrr79y7do1vL29\ngXsD75s3b2rPChcxNjYmLS1NOxizs7PTWR8QEIBarWbatGmkpaXRsWNHgoKCaNKkSZn2tWhQtnXr\nVpydnYmKiqJDhw40bty4xPJpaWnY2trq7J+9vb12nZWVVZnafVT/7ne41/fZ2dkVitHHx4eMjAzC\nwsJITk7mtddeY9SoUbRu3bpMsZTneGnUqFGxcnXq1NG5odbOzg6VSsXNmzextrZmy5YtREVFceXK\nFQoLC1GpVNStW1enjgf1R35+PkuXLmX//v3aM+B5eXl0794dgFWrVuncGJ6QkED9+vV1Es8HKant\nnJwcAO7cuUNYWBiJiYncvn0bPT09cnNzi52Jv//3qKRlRfvz7366/3NaWhpw7yk/YWFhnDx5kszM\nTPT09MjOziYjI6PEfbh27Rpdu3Z9YP2lxVm0r0IIIYSoHNVyBaBRo0baKQxF1Go1qamppQ6My8LN\nzY28vDwOHTrEtm3bcHd31w78LC0tsbW15cCBAzo/hw8f1pmOoq+v2yVmZmaMHDmSTZs2ERMTg4GB\nQalTXe7ftkifPn34+eefSUlJISYmhr59+5a6Dw0bNiQtLU1nwFv0KMWGDRuWrSOqWHljNDAwICAg\ngHXr1vHDDz/QvHlzJkyYUOb2SjpeAC5evKhNPIqU9B3cuXNH51Gply9fxtDQkAYNGvDbb78xZ84c\nxo8fz65duzhw4ACjRo1Co9GUOb4NGzZw4MABFi1axE8//cSBAwdQKpXaOoYOHaqdFlZ0JcjZ2Znr\n169z5MiRMrdTksWLF3P+/HlWrFihPaYdHBzKFX9prly5ovP58uXL2kT5888/R6PRsH79euLj49m/\nfz8WFhaltvvcc88Vq+/+z0IIIYR4PKolAfDz82P79u0kJiaiUqnIzs5m6dKlaDQanJycKlyviYkJ\nPj4+bNiwgb1792qn/8C95EClUhEREaEdDN68eZOdO3c+sM79+/dz7tw5VCoVpqammJiYYGBgUGJZ\nS0tL0tLSuHv3rs5yOzs7OnbsyMSJEzE0NMTFxaXU9pycnDAwMCA8PJy8vDzS09OZP38+Li4uj+3s\n/8OUN8YjR45w+vRpCgoKMDY2xtzcXGegHhgYWGpSBfDmm29y8OBBdu3aRUFBAXl5eWzatIlz585p\nz7I/iJ6eHgsXLiQ3N5fr16+zfPlyfH19MTAwICsrC319ferXr4+RkRFnzpzh22+/LVd/ZGVlYWRk\nRP369VGr1fz4448PnP4D96YU9enTh08++YRdu3Zpj8mLFy8yd+5cTpw4Uea2TU1NqVevHiqVio0b\nN5KUlFSu+Evz3Xff8dtvv6FSqYiJieGvv/7SXlHLysrCzMyMOnXqkJuby5IlS8jNzS21Ll9fX2Ji\nYjh16hQqlYrt27dz9uzZSolTCCGEEOVTLVOAPD09yc/PZ9GiRaSmpmJiYkLr1q2JjIwsNvWivPz9\n/Rk4cCBNmzalXbt22uUWFhasWbOG8PBwBgwYQGZmJvXr1+eNN97A09Oz1PpSU1NZsGAB6enpGBsb\n8+qrr/Lpp5+WWLZ79+7s3r0bT09P1Go1YWFhtG3bFoB+/foxduxYAgMDS5y+VKRWrVpERkYyf/58\nvL29dZ6w86Qob4wZGRnMnTtXe+b9hRdeYO7cudr1V65c4c033yy1vTZt2jBv3jxWrVrFzJkz0dPT\no0WLFkRERJRpKpalpSUtWrTA399f+xSg4OBgAN544w369OnD8OHDUalUvPrqq/To0YOoqKgy98c7\n77zDP//8g6+vLyYmJri5udGlS5eHbhcSEsIrr7zC//73P6ZOnYqhoSE2NjZ4eHjQsmXLMrU9atQo\npk6dioeHBxYWFvj5+VXaDdZ9+/Zl6dKlnDp1CltbW+bPn6+94jJx4kRmzJiBq6sr9erVIyAggOee\ne67Uunr06MHVq1cJDg4mOzsbd3d3nJ2dMTY2rpRYhRBCCFF2ellZWY8+V0A8VFJSEv379yc2NhZb\nW9vqDueJcfHiRYKDg9m4cWOpU6jE41fay/oq08CBA+nevTtDhgyplPrUajVnz55l3v4Uzl65XSl1\nClEWDjZ12RzsR05OziNNvys6hlu2bCl/D6uA9G/Vkz6uWvf376P0t3w7j0FBQQGrV6/G3d1dBv/3\nadKkCd9++638oXgG7Ny5k7y8PO7evcuGDRtISkrCw8OjusMSQgghnjlP7IvAaor4+HgmTZpEs2bN\nWLhwYXWHI0S12bZtG9OnT0etVtOkSRMWLlxY5qdpCSGEEKLySAJQxZydnR/4QighnkRFL32rTMuW\nLav0OoUQQghRfjLvQgghhBBCiGeIXAEQQtQojS3roFJXdxTiWWJvVae6QxBCiHKRBEAIUaPMfsdV\nbioXj52qULJOIcTTQxIAIUSNkp2dXerL+kTFaTQakpOTadasGXp6etUdzhOpMt7ALYQQj4MkAEKI\nGkWtVssVgCqgVqvJy8uT/hVCiBpA/ooLIYQQQgjxDJEEQAghhBBCiGeITAESQtQo+vr6Mke9Cujr\n62Nqaloj+1fm7gshnjWSAAghahQLCwuZo15FXn755eoOodKpCtXk382TJEAI8UyRBEAIUaNMWr+f\n5Ot3qjsM8RSwt6rDgsFdya/uQIQQ4jGTBEAIUaOk3LhD0tXb1R2GEEII8cSS6+RCCCGEEEI8QyQB\nEEIIIYQQ4hkiCYAQQgghhBDPEEkAhBBCCCGEeIZIAlCDTZ8+nWnTplVb+ydOnECpVFJYWPhY2y0o\nKCAkJIQuXbqgVCrJzMyssrYUCgWJiYlAyfu7bt06unfvjlKp5MCBA1UWx6pVqxg1alSV1V+Vqvs4\nFUIIIZ418hSgJ5Cvry/Dhg2jV69eOssDAwN5/fXX+eCDD8pUT0hISFWEV2YKhYKEhATt52XLlnHk\nyBFWr15dpe3u2bOHo0eP8t1331GrVq1Sy12+fJmVK1dy+PBhbt26Rd26dXnxxRcZNGgQjo6O5W73\n/v29du0aYWFhrFu3rsqfnz506FCGDh1aqXUqFApMTEwwMDBAX18fS0tL2rZty6BBg2jRokWltVPd\nx6kQQgjxrJErAKLCCgoKqjuEEqWkpNC4ceMHDv6TkpIYNGgQubm5REREEB8fT1RUFL6+vuzatatS\n4khNTUWj0fDiiy9WuI7q7uNFixZx8OBB9u/fT1hYGBYWFgwaNIiDBw9Wa1xCCCGEqDhJAJ5Sly9f\nRqFQEBsby4ABA3ByciIgIICkpCRtmdDQUO3Z1SVLlvD+++/r1HHjxg0cHR05c+YMcO+M9ZQpU/D0\n9MTd3Z2PP/6YjIwMbfnAwEBmzZrF5MmTcXV1Zc6cOWRmZjJ58mTc3NxwdnbG39+f3bt3A3Ds2DEU\nCgUqlYodO3awevVqTp48iVKpRKlUcuLECYYMGcLy5ct14tq9ezceHh6lDn6TkpIICgrCzc0NLy8v\nvvjiC+00n9DQUL788kttO0FBQSXWMW/ePJ5//nlmzpxJs2bNMDAwwMzMjG7duvHJJ58AcP36dcaM\nGYOHhwdOTk7079+fH3/8sdTv5N/7Gx0drZ2S4+rqilKpBODu3buEhYXRo0cPXF1dGTJkCL///ru2\njpiYGLy8vNi0aRO+vr507doVuHc2fuPGjbz33nsolUr69+/PL7/8ot1u2bJlDBkyRPt506ZN9OvX\nD2dnZ+0+/fu7LC89PT2aNGnChx9+SPfu3ZkxY4b2zakPauvChQu0b9+ey5cv69Q3btw45syZA+ge\npxqNhsjISLy8vHBycsLLy4slS5ZUOG4hhBBCFCcJwFMuLi6O8PBw9uzZg42NDTNmzCixnL+/P8eP\nHyc1NVW7LDY2lhYtWtCqVSvy8/MZMWIE1tbWREdHExsbi4GBAVOmTNGpJyYmhh49erBv3z4mTJjA\n2rVrycnJITY2lgMHDhAREYGDg0Ox9n18fBgyZAivvfYaCQkJJCQkoFAo6NevH9u3b0etVmvLbt26\nlZ49e2JkZFSsnuzsbEaOHImDgwNxcXGsX7+e5ORkQkNDAZg6dapOO+Hh4cXqyMvL4+jRo/j6+j6w\nb9VqNX5+fsTExLBv3z4GDRpESEgI586de+B2cK+/iwau+/fv104NWrRoEQkJCURERLB79266du3K\nyJEjuXr1qnbbGzducPbsWTZv3qyTcGzbto2pU6eyf/9+OnTo8MCpM1ZWVsybN4/9+/ezdu1aLl68\nqB1wPyofHx/S0tK4cOHCQ9tq2rQpbdq0ISYmRrv99evXSUhIwN/fv1jdiYmJbN++na+++oqDBw+y\nadMmXFxcKiVuIYQQQtwjCcBTLjAwEGtra0xMTOjZsyenT58usZy9vT0KhYLo6GjtsujoaO0gLD4+\nnuzsbMaNG4eZmRnm5uaMGTOGxMREncGpq6srTk5O6OvrY2ZmhpGREbdu3SI5ORmNRoOdnV2JCUBp\nPDw8uHv3rnaAfOnSJY4dO0bv3r1LLB8fH09BQQFjxozBzMwMa2trgoOD+emnn0hPTy9Tm3fu3KGw\nsBAbG5sHlrOxscHd3R1zc3OMjIzw9/enefPmHD16tMz7929qtZrt27czatQomjRpgpGREe+88w6N\nGjVix44dOmWDg4MxNzfHzMxMu+ydd96hSZMmGBoa0rt3b9LS0rhx40aJbbm7u9O0aVP09fWxs7Nj\n8ODBHD58uEJx369hw4YA3L59u0xt9erVi5iYGG2St337dl566SVatmxZrG4jIyPy8/NJSkoiLy+P\nunXr0qZNm0qJWwghhBD3yE3ATyBDQ0NUKlWx5SqVCkND3a/M2tpa+28zMzPy8vJKLAf3BmJhYWGM\nGDGCX3/9lWvXruHt7Q3cG3jfvHkTV1dXnW2MjY1JS0vTDpbt7Ox01gcEBKBWq5k2bRppaWl07NiR\noKAgmjRpUqZ9LRpYb926FWdnZ6KioujQoQONGzcusXxaWhq2trY6+2dvb69dZ2Vl9dA269Spg4GB\ngU5iU5I7d+4QFhZGYmIit2/fRk9Pj9zcXG7evFmmfbvfrVu3yMvLK7Zv9vb2pKWlaT/Xr19fZ+Bf\n5P7vGu5dEbG0tCxWds+ePaxfv55Lly6Rn5+PWq0mNzeXwsJCDAwMKhR/kaJY69atW6a2PDw8mDNn\nDocPH+aNN94gJiaGd999t8S627Vrx5gxY/jqq6+YPHkyLVu2JDAwkE6dOj1SzEIIIYT4P3IF4AnU\nqFEjLl68qLNMrVaTmppa6sC4LNzc3MjLy+PQoUNs27YNd3d3ateuDYClpSW2trYcOHBA5+fw4cM6\nZ2D19XUPGTMzM0aOHMmmTZuIiYnBwMBAOx3nfvdvW6RPnz78/PPPpKSkEBMTQ9++fUvdh4YNG5KW\nlqaTIKWkpGjXlYWpqSkdOnQodtb9fosXL+b8+fOsWLFC2x8ODg7aue/lVa9ePUxMTLTx/jv+f8de\nWj+V1dWrV5k0aRIDBw5kx44dxMfH8/nnnwNUOPZ/+/7772nYsCFNmzYtU1umpqZ4e3sTHR3NkSNH\nuHHjBl5eXqXW7+/vz8qVK9mzZw9du3Zl3LhxZGdnP3LcQgghhLhHEoAnkJ+fH9u3bycxMRGVSkV2\ndjZLly5Fo9Hg5ORU4XpNTEzw8fFhw4YN7N27V2cOtpubGyqVioiICO0NtTdv3mTnzp0PrHP//v2c\nO3cOlUqFqamp9rGRJbG0tCQtLY27d+/qLLezs6Njx45MnDgRQ0PDB875dnJywsDAgPDwcPLy8khP\nT2f+/Pm4uLiU6ex/keDgYP755x9CQkK4cOEChYWF5OXlsXfvXqZPnw5AVlYWpqam1KtXD5VKxcaN\nG3Vusi4vfX19evbsSWRkJCkpKRQUFLBhwwYuXbqkvRJTGXJyclCr1dqE4+LFi3z11Vc6ZYpuIj92\n7FiZ67106RILFy5k586dTJo0CT09vTK1BfcG9UX3CHTr1g0LC4sS2/jjjz84fvw4eXl5GBkZYW5u\njp6e3iMnRUIIIYT4PzIF6Ank6elJfn4+ixYtIjU1FRMTE1q3bk1kZKR22kVF+fv7M3DgQJo2bUq7\ndu20yy0sLFizZg3h4eEMGDCAzMxM6tevzxtvvIGnp2ep9aWmprJgwQLS09MxNjbm1Vdf5dNPPy2x\nbPfu3dm9ezeenp6o1WrCwsJo27YtAP369WPs2LEEBgaWOH2pSK1atYiMjGT+/Pl4e3tjbGyMk5MT\nY8eOLVc/ODg48PXXX7NixQref/997ty5Q926dXnppZd4++23ARg1ahRTp07Fw8MDCwsL/Pz8Hnk+\n+vjx44mMjGT48OFkZWXRokULIiIiynz1oiyaN2/O6NGj+fTTT8nJyaFFixb4+Phw6tQpbZkrV65Q\nu3btEufh/9u4ceMwMDBAT08PS0tLXn/9dTZs2KDdrixtAbRq1Yrnn3+ew4cPl5ggFMnJySEsLIwL\nFy6gr69PkyZNmDdvXolTooQQQghRMXpZWVmPPidAiEeUlJRE//79iY2NxdbWtrrDqfHCw8OpXbt2\nqXPxn0ZqtZqzZ88yb38KZ6/cru5wxFPAwaYum4P9yMnJqZTpcY+q6Bhu2bKlXPWqAtK/VU/6uGrd\n37+P0t9yBUBUu4KCAlavXo27u7sM/h+T0t6PIIQQQoiaT9IzUa3i4+NxdXUlKSmJCRMmVHc4Qggh\nhBA1nlwBENXK2dmZQ4cOVXcYQgghhBDPDLkCIIQQQgghxDNEEgAhhBBCCCGeITIFSAhRozS2rINK\nXd1RiKeBvVWd6g5BCCGqhSQAQogaZfY7rvL4OVFmqkLJFoUQzx5JAIQQNUp2dnapb6MWFafRaEhO\nTqZZs2bo6elVdziV6kl4B4AQQjxOkgAIIWoUtVotVwCqgFqtJi8vT/pXCCFqAPkrLoQQQgghxDNE\nEgAhhBBCCCGeITIFSAhRo+jr69e4OepPAn19fUxNTWtk/8o9AEKIZ40kAEKIGsXCwkLmqFeRl19+\nubpDqHSqQjX5d/MkCRBCPFMkARBC1CiT1u8n+fqd6g5DPAXsreqwYHBX8qs7ECGEeMwkARBC1Cgp\nN+6QdPV2dYchhBBCPLHkOrkQQgghhBDPEEkAhBBCCCGEeIZIAiCEEEIIIcQzRBIAIYQQQgghniGS\nAAgtpVLJsWPHqjuMUl25cgWlUklKSkp1h1JmO3bswMfHB6VSybfffvvY2g0NDSUkJKRK24iJicHL\ny6tK2xBCCCFE5ZOnAD1Gf//9N1999RXHjh0jKyuLOnXq0LRpU3x8fPDz86vu8EhISHik7QMDA3n9\n9df54IMPHjmWZcuWceTIEVavXq1dZmtrqxNjTEwMERER/PDDD49cd1VQqVR88cUXTJ06lW7duhVb\nv2rVKp0YcnNzMTEx0T7Dvm3btoSHh1dpjEIIIYR49kgC8JgcPXqUMWPG0Lt3b1avXo2dnR0qlYpf\nf/2Vb775pkoTgIKCAoyMjKqsflGyGzdukJeXx4svvlji+qFDhzJ06FDgXrLg6OjIkiVLaN++/eMM\nUwghhBDPGJkC9JhMnz6d7t2789FHH9G4cWP09fUxNjbG0dGRhQsX6pQ9ePAgAQEBuLq64ufnxzff\nfKOz/rfffmPIkCG4urrSo0cPFi9eTH7+/73KxtfXl8jISD744AOcnJzYsGEDBQUFLFiwgG7duuHm\n5saSJUsYMmQIy5Yt026nUChITEwE4Pr164wZMwYPDw+cnJzo378/P/74Y7n22dfXly+//JLRo0fj\n5OREz5492bt3r3b92bNnGTZsGC4uLri6ujJo0CCSk5PZsWMHq1ev5uTJkyiVSpRKJSdOnODy5cso\nFAouXrzIiRMnmDFjBtevX9eW2bFjh06ZIseOHUOhUKBSqUqtG+D8+fPaffb09GTmzJnk5uaWun93\n794lLCyMHj164OrqypAhQ/j9998BSExMpFevXgAMHDgQpVLJlStXytV/v//+O4GBgXTt2hUfHx8i\nIiJQqVTa9VevXiUkJAQvLy+cnZ0ZOHAgZ86c0a4vLCxk1qxZdO3aFQ8PDyIiIrTrivopNjaWAQMG\n4OTkREBAAElJSWXav/L2B4BGo+Grr77Cx8cHFxcXpk2bxqRJkwgNDQUgIiKC4cOH69SZnp6Oo6Mj\nf/31V7n6TgghhBClkwTgMbhw4QIXL17Ex8fnoWWPHj3KlClT+OCDD9i3bx/z589n3bp17NixA7g3\nD37kyJG4u7uze/duIiIiOHDgAGFhYTr1REVFMXz4cOLj4xk4cCBfffUVP/30EytWrOCHH37AyMiI\nP/74o9Q41Go1fn5+xMTEsG/fPgYNGkRISAjnzp0r175HR0czatQoDhw4QP/+/QkNDSXr/7V373E1\np/sCxz+reypTk0SUy85gnM3IGbdSKluRnWWSmXHfZuzkzo6ZwZmM2SY2e5ShDI7DZGbCELltg1zb\n7ma2mWG0DUmpzCAprbRa6/zhtI6l0opYan3fr5cX6/k9v+f5Pk+/ld93/Z7f+hUWAhATE0PXrl1J\nTU1l//79REdH4+DgQP/+/RkzZgwdO3YkLS2NtLQ0vLy89Nr18vJi1qxZuLi46OoYMr9VtX379m3e\neecdunbtyq5du0hKSuLq1assXry4yrZiY2NJS0sjPj6effv24e/vT2RkJHl5eXTr1o1vvvkGgKSk\nJNLS0mjatKnB85aRkcG4ceMYPHgwe/fuZfXq1Rw6dIi1a9cCoFKpiIiIwMLCgq+//ppDhw7xySef\n8NJLL+naOHDgAJ07d2bfvn38/e9/Z+3atZw6dUqvn507d7Js2TL279+Pq6srn3zyiUHjq+l8lPf1\nxRdfsHDhQlJTU+nYsSMHDhzQ7f/GG2/w/fff6yVvW7dupV27dlVeRRFCCCFEzUkC8Bzcvn0bABcX\nF13Zv//9b3x9ffH19aV79+6cOXMGgC+//JLw8HC6deuGmZkZnp6ehIWFkZKSAsDu3btp0aIFw4YN\nw9LSEg8PD8aPH09ycjJarVbXfmhoKJ06dUKhUGBra8uOHTsYPnw4LVu2xMrKirFjx9KwYcMqY3Z1\ndSUwMJAGDRpgaWmJUqmkVatWFU4gq6NUKmnfvj1mZmaEhYVRVFTElStXALC0tCQ3N5ecnBwsLCxo\n27Ytzs7ONWq/tuzcuRN3d3eGDx+OlZUVTk5OjBs3jh07dlBWVlahvkajYdu2bYwfPx4PDw8sLS0Z\nMWIEzZo10yVrT2Pjxo34+voSFBSEhYUFbm5ujBo1SnccHD16lDt37jB79mycnJwwMzOjdevWuLm5\n6dro1KkTQUFBmJub06lTJ1555RV++uknvX7Gjh2Li4sL1tbWhIaGcv78+ScanyH1d+zYwcCBA/n9\n73+PhYUFSqWSNm3a6Npo0qQJ3t7ebN68WddmcnIygwcPfur5FEIIIcT/k3sAngMnJycAbty4QevW\nrQFo06YNhw8f1q39Lj95z8zM5OTJk2zatEm3v0ajoUmTJsCDZR/NmzfXa9/d3R2VSsXt27d5+eWX\nAfROBOHBkp6HP4E2NzfH1dW1ypgLCgqIi4vjxIkT3LlzB4VCQXFxMbdu3arR2B9OemxtbQG4d+8e\nAHPnzuW///u/iYiIQKPREBgYyIQJE2jQoEGN+qgNmZmZXLhwAV9fX71yhULBzZs3ady4sV55fn4+\nKpWq0p9Fbm5urcRz+vRpvXi0Wi0ajQaA7OxsmjZtipWVVZVtPDz38GD+i4qKqqxja2uLSqVCrVZT\nUFBQo/EZMh83btzA399fb/ujx2l4eDhz5sxh4sSJnDx5ksLCQvr27VvlGIUQQghRc5IAPActWrTA\n3d2d3bt3071798fWbdSoEcHBwRXWQpdzdXWtsA47KysLGxsbXaIB6L5JppyLi4veGnSNRsONGzeq\njGPp0qVcuXKFVatW0aRJExQKBW+++abeVYan5ebmxn/9138BD054p0+fjq2tLRMnTqwQf2Uqq1Oe\nPKhUKl3Zr7/+Wu1+zs7OvPbaa6xcudKg2B0dHbG2tiYrKwtPT09deVZWFh06dDCojcdxdnYmODiY\nuXPnVrrdzc2NnJycZ3aDd03HZ0j9xo0bV7gPIicnh9/97ne61z169MDe3p7U1FT27NnDgAEDsLGx\nqe3hCSGEECZNlgA9J7NmzWLPnj0sWrSI7OxsNBoNpaWluqU/5d5++22SkpI4ceIEarUatVrNpUuX\ndPWCg4PJyMggKSmJ0tJSrl27RkJCAkqlEoVCUWX/ISEhfPnll1y9epXS0lJWr17NnTt3qqxfWFiI\njY0Njo6OqNVqkpKS9G4QrQ0pKSnk5eWh1Wqxt7fH3Nwcc3Nz4MEJcG5uLiUlJVXu7+zsTH5+Pvn5\n+boyR0dHmjVrRnJyMmq1mqysLBITEyvs92jboaGhXLx4kY0bN1JcXIxWqyU3N1dvjfrDzMzMCA0N\nJSEhgaysLEpLS1m/fj3Xrl2jX79+TzErDwwZMoT9+/ezd+9eSktLKSsrIzMzU/c1qL169cLBwYGY\nmBhu376NVqvl8uXLXL9+/an7hpqPz5D6ISEhpKSk8NNPP6FWq9m2bRvp6el67SgUCgYPHsyaNWs4\nevQoYWFhtTIeIYQQQvw/uQLwnHTr1o0vvviCNWvW8Kc//Un3HAAPDw8+/vhjOnXqBIC/vz9WVlas\nWLFCt1bew8ODUaNGAQ8++Y2Pj2fp0qXEx8djb29P3759iYyMfGz/Y8aMoaCggHfeeQeNRsOgQYNo\n27Yt1tbWldYfP348H330EX369MHOzo6BAwfqYqwtp0+fZtmyZRQWFmJvb4+fnx+jR48GoG/fvuzb\nt4+goCA0Gg1xcXEVliy9/vrr+Pn5MWjQIMrKyvjggw/o168f8+bNIyYmBj8/P9q0aYNSqWTBggW6\n/Spru3Pnzqxdu5Zly5axevVqVCoVLi4uBAcHV1i2Um7atGkkJCTw5z//mcLCQjw9PYmPj9ct13oa\nHTp0ID4+noSEBGJiYlCr1bi5uenWw9vY2PD5558TFxfHm2++SXFxMc2bNyc6OrrCsponVdPxVVd/\nwIAB5OXlERUVRVFREYGBgfTq1avCMqbQ0FDi4+P5/e9/r1syJ4QQQojaoygsLKy9NR2izlCr1fTt\n25eZM2fK01yF0bz11lv07duXMWPG6MrKysro378/U6ZMMeibncppNBrS09NZfCiL9Jyqr24JUa61\n60tsihrIvXv3anV545MqP4ZfeeUVg5ZBipqR+X32ZI6frUfn92nmW346JqKoqIhDhw5RWlrKvXv3\nWLp0KVqtFm9vb2OHJkzInj17UKlUlJSUsH79ei5fvkyfPn306mzZsgUzM7NKn54shBBCiKcnS4BM\nhEajYfXq1cyZMweFQoGnpydLly7FwcHB2KEJE5KcnMz8+fPRaDR4eHiwZMkSPDw8ALh79y79+vXD\n3t6euXPnytOrhRBCiGdEEgAT4eDgUOFmWCGet4efPP0oBwcHjh49+hyjEUIIIUyTLAESQgghhBDC\nhMgVACFEvdLcuSFqjbGjEHWBe6Oqn4YuhBD1mSQAQoh6ZeEIP/n2CWEwdZlki0II0yMJgBCiXikq\nKtI9UE7UHq1WS0ZGBi1btnzsQwfrohfhK0CFEOJ5kgRACFGvaDQauQLwDGg0GlQqlcyvEELUA/Jb\nXAghhBBCCBMiCYAQQgghhBAmRJYACSHqFTMzs3q3Rv1FYGZmho2NTa3Nr6y7F0II45EEQAhRr9jZ\n2cka9WekQ4cOtdKOukzD/RKVJAFCCGEkkgAIIeqV9xIPkfFrgbHDEFVwb9SQT0f7c9/YgQghhAmT\nBEAIUa9k3Szgct4dY4chhBBCvLDkOrkQQgghhBAmRBIAIYQQQgghTIgkAEIIIYQQQpgQSQCEEEII\nIYQwIfUmAZg/fz7z5s0zWv9nz57F29ubsrKy59pvaWkps2fPpnfv3nh7e3P37t3n2n9VUlJSCA4O\nNnYYBns0XmMfT1U5ffo0Xl5eqNVqo8YxduxYli9f/tTtTJw4kVWrVulee3l5ceLECeDFGasQQghR\n3xj9W4BCQkJ49913GTRokF752LFjee2115gwYYJB7cyePftZhGcwLy8v0tLSdK9XrFjByZMnWbNm\nzTPtd//+/Zw6dYodO3Zgb29faZ3o6Gi2b9/OzJkzeeutt3Tly5cv5/vvv9c7AXsSNf1ZPc7169dZ\nvXo1x48fJz8/n5deeom2bdsydOhQunbt+tTtG8pYx9OLMv6nVdUxER0djVqtZv78+QAsW7bMGOEJ\nIYQQJq3eXAF41kpLS40dQqWysrJo3rx5lSf/5RwdHfn888+5c6f2vh6xtufk8uXLDB06lOLiYuLj\n4zly5AhbtmwhJCSEb7/99onbfVF/do96VuMXQgghhHhYnUgArl+/jpeXF9u3b+fNN9/Ex8eHkSNH\ncvnyZV2d6Oho3ae2n332GREREXpt3Lx5k65du3LhwgUAbty4waxZswgKCiIwMJAPPviA27dv6+qP\nHTuWBQsW8P777+Pn58ff/vY37t69y/vvv09AQAC9evVCqVSyb98+QH+5wq5du1izZg3nzp3D29sb\nb29vzp49y5gxY/j888/14tq3bx99+vSp8iT18uXLTJw4kYCAAIKDg/nrX/+qW+YTHR3NypUrdf1M\nnDixyjns0aMHrVq1IiEhoco6JSUlxMXFMWDAAPz8/BgzZgw//PCDbnv5MpkNGzYQEhKCv78/8+fP\n57vvvmPdunW6sT7sm2++ISQkBF9fX2bOnElhYWGV/S9evJjf/e53xMTE0LJlS8zNzbG1teUPf/gD\nc+bMAeDXX39l8uTJ9OnTBx8fH4YMGcLevXv12vHy8mL9+vWMHj2anj17kpqaWu3YHvXw8QQPrlSt\nXLmSSZMm4ePjQ2hoKKmpqbrtly5dIiIigoCAAHx9fRk5ciQnT56ssv0nHX+5gwcPolQq8fHxITIy\nkhs3bui2bdiwgfDwcHr16qXb9+Fje8WKFYwZM4bPPvuMwMBA/vCHP7BkyRK9Y7C690dtqa2lREII\nIYQwXJ1IAMrt3LmTZcuWsX//flxdXfnkk08qradUKjlz5gzZ2dm6su3bt+Pp6Un79u25f/8+48aN\nw8XFha1bt7J9+3bMzc2ZNWuWXjspKSkMGDCAAwcOMH36dNatW8e9e/fYvn07hw8fJj4+ntatW1fo\nv3///owZM4aOHTuSlpZGWloaXl5ehIeHs23bNjQaja7u5s2bCQ0NxdLSskI7RUVFREZG0rp1a3bu\n3EliYiIZGRlER0cD8NFHH+n1U91yihkzZpCcnMwvv/xS6fbY2FjS0tKIj49n3759+Pv7ExkZSV5e\nnq7OzZs3SU9PZ9OmTezdu5fZs2fTuXNnRo0apRvrw3UzMjLYvHkzmzdv5uLFiyQmJlbat0ql4tSp\nU4SEhDx2DBqNhoEDB5KSksKBAwcYOnQos2fPrjCmLVu28OGHH5KWloafn59BY6vO1q1bGT9+PIcP\nH2bIkCFER0frJTR/+tOf2LVrF/v27aNnz55ERUVx69Ytg9o2dPzlDhw4QGJiIrt370alUun97Bs1\nasTixYs5dOgQ69atIzMzk7/97W96+//444+Ym5uze/duVq5cSWpqKuvWrQMw+P0hhBBCiLqpTiUA\nY8eOxcXFBWtra0JDQzl//nyl9dzd3fHy8mLr1q26sq1bt6JUKgE4cuQIRUVFTJ06FVtbWxo0aMDk\nyZM5ceKE3gmhn58fPj4+mJmZYWtri6WlJfn5+WRkZKDVanFzc6s0AahKnz59KCkp0Z0kX7t2jdOn\nT/PGG29UWv/IkSOUlpYyefJkbG1tcXFxISoqioMHD/Lbb78Z3G+59u3b079/fxYvXlxhm0ajYdu2\nbYwfPx4PDw8sLS0ZMWIEzZo1Y9euXXp1o6KiaNCgAba2to/tz9zcnClTpmBjY4OLiwu9e/fmp59+\nqrRuQUEBZWVluLq6PrZNV1dXAgMDadCgAZaWliiVSlq1asWpU6f06g0dOpTWrVujUCiwsrIyeGyP\no1Qqad++PWZmZoSFhVFUVMSVK1cA8PT0pHv37tjY2GBlZcW4ceMAHnuV4UnGX27ixIk4ODjg4OBA\ncHAwP/74o25bYGAgLVq0wMzMDDc3N0aPHs3x48f19m/YsCERERFYWVnRqlUrRo4cSUpKCmD4+6M6\niYmJ+Pr66v3ZvXu3wfsLIYQQ4tkw+k3AFhYWlX7Lh1qtxsJCPzwXFxfdv21tbVGpVJXWAxg0aBBx\ncXGMGzeO77//nhs3btCvXz/gwYn3rVu38PPz09vHysqK3Nxc3UmYm5ub3vaRI0ei0WiYN28eubm5\ndOvWjYkTJ+Lh4WHQWMtPWDdv3kyvXr3YsmULr7/+Os2bN6+0fm5uLk2bNtUbn7u7u25bo0aNDOr3\nYRMnTmTQoEEcPHhQrzw/Px+VSlUhFnd3d3Jzc3WvnZycqj3xL+fo6Kh3ZcPW1pZ79+5VWrdhw4aY\nm5tXe4JZUFBAXFwcJ06c4M6dOygUCoqLiyt80t6sWbMaj606jx5/gG48OTk5xMXFce7cOe7evYtC\noaCoqMjgZTOGjr+qWB6e1/3795OYmMi1a9e4f/8+Go2G4uJiysrKMDc3Bx4kUuX/hgfHevlcGPr+\nqM6IESOqvAlYCCGEEMZj9CsAzZo1IzMzU69Mo9GQnZ1d5YmxIQICAlCpVPzzn/8kOTmZwMBAHBwc\nAHB2dqZp06YcPnxY78/x48fp1KmTrg0zM/3psbW1JTIykg0bNpCSkoK5ubluOc6jHt23XFhYGMeO\nHSMrK4uUlBQGDx5c5RiaNGlCbm6u3glTVlaWbtuTcHZ25p133qmw5tvR0RFra2td+w/393BflY1L\noVA8USwPs7Gx4fXXX6/2E/mlS5dy5coVVq1apfu5tW7dGq1Wq1fv4TgNHdvT+Pjjj9FqtSQmJnLk\nyBEOHTqEnZ1dhbiqYuj4q5OXl8d7773HW2+9xa5duzhy5Agff/wxgF4seXl5el9Zm5OTozuxN/T9\nIYQQQoi6yegJwMCBA9m2bRsnTpxArVZTVFTE8uXL0Wq1+Pj4PHG71tbW9O/fn/Xr15Oamqpb/gMP\nkgO1Wk18fLzuhtpbt26xZ8+ex7Z56NAhfvnlF9RqNTY2NlhbW+t9ivowZ2dncnNzKSkp0St3c3Oj\nW7duzJw5EwsLC3x9favsz8fHB3Nzc5YtW4ZKpeK3337j73//O76+vk/06X+5oUOHAuiWfMCDE+bQ\n0FASEhLIysqitLSU9evXc+3aNd2Vk6o0atSoQhL3JKKiorh06RKzZ8/m6tWrlJWVoVKpSE1N1X1t\nZGFhITY2Njg6OqJWq0lKStK7GbwyTzM2QxUWFmJra0vDhg0pLi7ms88+o7i4WK/O2LFjq0wYwbDx\nV+fevXtoNBpd0pOZmcn//M//VKhXUFDAypUruX//PhkZGXzxxReEhoYCT/7+EEIIIUTdYPQEICgo\niBkzZhAbG0tAQABKpZJLly6RkJDASy+99FRtK5VKTp06haurK126dNGV29nZsXbtWnJzc3nzzTfp\n1asXo0eP5uzZs49tLzs7m+nTp+Pn50dwcDC3bt3iww8/rLRu3759adGiBUFBQfj6+vLdd9/ptoWH\nh/Pzzz+jVCorXb5Uzt7enoSEBNLT0+nXrx/Dhg3D3d39qR9QZWlpyfTp08nPz9crnzZtGt27d+fP\nf/4zgYGBpKamEh8fX+2n5MOHDycjIwM/P7/HJjTVad26NV999RVWVlZERETQq1cvBg0axPbt23UP\n6Ro/fjwlJSX06dOHkJAQbt68adCn0k86NkPNnDmT9PR0/Pz8CAsLo3HjxjRu3FivTk5Ojt5x+ChD\nxl+dVq1aMWnSJD788EN8fHz48MMP6d+/f4V6//Ef/4FarSY4OJh3332X3r17M3r0aODJ3x9CCCGE\nqBsUhYWFhq1RELXm8uXLDBkyhO3bt9O0aVNjhyOeg8zMTKKiokhKSqpyedjz8rweUve8aTQa0tPT\nWXwoi/Sc2nvehahdrV1fYlPUQO7du2fwEjlTUX4Mv/LKK0b/PVEfyfw+ezLHz9aj8/s08230m4BN\nTWlpKWvWrCEwMFBO/k2Ih4cHGzduNHYYQgghhBDGXwJkSo4cOYKfnx+XL19m+vTpxg5HCCGEEEKY\nILkC8Bz16tWLf/7zn8YOQ5i4cePG6Z5TIIQQQgjTI1cAhBBCCCGEMCGSAAghhBBCCGFCZAmQEKJe\nae7cELXG2FGIqrg3amjsEIQQwuRJAiCEqFcWjvCTr597wanLJEMTQghjkgRACFGvFBUVVfmEbvHk\ntFotGRkZtGzZEoVCUSvtCSGEMA5JAIQQ9UL5CaVarTZyJPWTRqNBpVKhVqvlCsszotFo9P4WtUvm\n99mTOX62Hp3f8r+f5AMVeRKwEKJeUKvVXLp0ydhhCCGEEM+Vp6cnFhY1+0xfEgAhRL2g0WjQaDQo\nFIpaWaIihBBCvMi0Wi1arRYzM7MaX5mVJUBCiHrhSX4BCiGEEKZI/rcUQgghhBDChEgCIIQQQggh\nhAmRBEAIIYQQQggTIgmAEEIIIYQQJkQSACGEEEIIIUyIJABCCCGEEEKYEEkAhBBCCCGEMCGSAAgh\nhBBCCGFC5EFgQog6TavVsmLFCpKTkyksLKR9+/Z88MEHeHp6Gju0emHFihWsXr0aa2trXZmvry8x\nMTFGjKpu27NnDxs2bODf//43RUVFnDx5EguL///vOD09nYULF3LhwgXs7e154403iIiIkCdcG6i6\n+fXy8sLa2lrvwYFr166lTZs2xgi3zlm6dClHjx4lJycHW1tbunTpwpQpU2jSpImuTk5ODjExMZw9\nexYrKyv69u3LX/7yFywtLY0Yed1hyByHhIRw8+ZNzM3NdWUxMTH4+voa1IckAEKIOu2LL74gJSWF\n5cuX4+7uzqpVq5gwYQLJyck0aNDA2OHVCx07dmTNmjXGDqPecHBwYMiQIahUKubNm6e3raioiIkT\nJ/LHP/6R5cuXc+3aNSZNmoS9vT3Dhw83UsR1y+Pmt1xsbCzdunV7zpHVDwqFgrlz59KmTRtUKhUx\nMTFMnTqVpKQkADQaDVOmTKFt27b84x//oKCggKlTpxIbG8uMGTOMHH3dUN0cl3vvvfcYNGjQE/Uh\nS4CEEHXapk2bGDFiBG3atMHGxobIyEhKS0tJTU01dmhCVKpnz54EBwfTvHnzCttSU1MpKysjMjIS\nGxsb2rRpw8iRI9m4caMRIq2bHje/4ulNmjSJV199FUtLSxwcHBg1ahTp6ekUFBQA8N1335GRkcH0\n6dOxt7fHzc2N8ePHk5ycTElJiZGjrxuqm+PaIAmAEKLOunv3LtevX6dDhw66MgsLC9q1a8fFixeN\nGFn98vPPPxMQEED//v2ZNWsW2dnZxg6p3rp48SJt27bVW7LSoUMHsrKyKCwsNGJk9cucOXPw9/dn\n6NChbNmyxdjh1GnHjh2jadOmNGzYEHhwDDdr1gwnJyddnQ4dOqBSqbh69aqxwqzTHp3jcsuWLaN3\n796Eh4ezdu1aSktLDW5TlgAJIeqsoqIi4MEl/4c5ODjotomn06dPH0JDQ2natCm//vorcXFxREZG\nkpSUJEusnoGioqJKj+fybfb29sYIq15JSEigU6dOmJubc+LECWbPnk1ZWRnh4eHGDq3OOXHiBCtX\nrmTRokW6suqOYVEzlc0xwLx582jXrh3W1tb88MMPzJkzhzt37jBlyhSD2pUrAEKIOsvOzg54cCXg\nYXfv3tVtE0/H09MTNzc3FAoFjRs3Jjo6mhs3bvCvf/3L2KHVS3Z2dpUez+XbxNPr1q0bNjY2WFpa\n4uPjw9tvv83OnTuNHVadc/jwYWbMmMFf//pXvL29deVyDNeequYYoEuXLtjZ2WFhYUHnzp2JiIio\n0XEsCYAQos5ycHDAzc2N8+fP68rUarVuGYWofQqFAoVCgVarNXYo9VLbtm25ePEiarVaV3b+/Hma\nN28un/4/I2ZmZnI819CuXbuYM2cOCxYsICAgQG9b27Ztyc7OJj8/X1d2/vx5bGxsaNGixXOOtO56\n3BxX5uFvtTKEJABCiDotPDycxMRELl26hEqlYsWKFVhYWBj0C1NU79tvv+X27dsA3Lx5k3nz5vHy\nyy/TqVMnI0dWd5WVlVFSUqJbr1taWkpJSQkajYaAgADMzc1ZsWIFKpWKS5cukZiYyJAhQ4wcdd3x\nuPm9cOEC58+fp7S0FLVazbFjx/jqq68IDg42ctR1R1JSEgsXLiQ2NpaePXtW2N65c2datmzJkiVL\nKCoqIicnh4SEBJRKpd7XCYuqVTfHmZmZnD17Vndcnzt3js8//5ygoCCD+1AUFhZK2iuEqLPKnwOw\nZcsWioqKaN++Pe+//758p3ctmTp1KufOnUOlUuHg4ICXlxeRkZF4eHgYO7Q6KyUlhblz51YoX7ly\nJf/5n/9Jeno6CxYs4Oeff8bOzo6wsDB5DkANPG5+i4qKiIuLIy8vD3Nzc5o2bUp4eDiDBw9+/oHW\nUV5eXlhYWFT4Tv/PPvsMLy8vAK5fv86CBQs4c+YMVlZWBAUFMX36dKysrIwRcp1T3Rz/+OOPfPzx\nx2RnZ6NQKHBxcSEkJISRI0ca/KwFSQCEEEIIIYQwIbIESAghhBBCCBMiCYAQQgghhBAmRBIAIYQQ\nQgghTIgkAEIIIYQQQpgQSQCEEEIIIYQwIZIACCGEEEIIYUIkARBCCCGEEMKESAIghBBC1BPXr1/H\ny8uLzMxMY4cCwPHjxxk0aBA+Pj7ExcXVevteXl6cOHECgNOnT+Pl5YVara71foSobyyMHYAQQghR\nn4wdO5YzZ86wZMkS/Pz8dOWzZ8/GwsKCjz76yIjRPV8LFy5EqVQyatSoSrdfv36dAQMGYGNjo/ek\n4+nTpxMWFva8whTC5EgCIIQQQtQyR0dHlixZQs+ePbG0tDR2OE+ltLT0iceQlZVFu3btqq2XlJSE\nh4fHE/UhhKg5WQIkhBBC1LI//vGPaDQavv766yrrhISEkJycrFdW2ZKWPXv2oFQq6dmzJ1OmTOHu\n3bvEx8fTt29fAgICSEhIqND26dOnCQsLo1evXkRERHDt2jXdtrKyMhITE3njjTfw9fVl6NChuj4B\nUlJSCA4OZsOGDYSEhODv719p/GVlZaxbtw6lUomvry/Dhg0jLS0NgKtXr+Lt7U1ZWRlTp07F29ub\ns2fPGj6B/+eHH35g7Nix+Pv7079/f+Lj4w1e4vO4+ACGDh3KN998o3s9YMAA3n77bd3rtWvXEhER\nAUBOTg6TJk2id+/e+Pr6Eh4e/kTjEeJFIQmAEEIIUcusrKyYNm0aq1ev5tatW0/V1tGjR/nyyy/Z\nsWMHV69eZeTIkbz88svs2rWL2NhY1qxZw7/+9S+9fZKTk1m+fDnffvstzZo1Y+rUqboT51WrVrFz\n504+/fRTDh48yLvvvsu0adP0koSbN2+Snp7Opk2b2Lt3b6VxffXVV3z99dfExMSQmprKyJEjmTZt\nGhcuXKBFixa6k+3Y2FjS0tLw8vKq0bgzMjIYN24cgwcPZu/evaxevZpDhw6xdu1ag/Z/XHwA3bt3\n5/jx48CDhOX+/ftkZ2frfl7Hjx+nR48eACxbtozGjRuzZ88eDh48yKJFi3B1da3ReIR4kUgCIIQQ\nQjwD/v7+tG/fnmXLlj1VOxMmTMDOzo6XX34ZHx8fAN566y0sLCzo2LEjrVq14qefftLb591336VJ\nkybY2tryl7/8hczMTM6dOwc8ODGePHkyLVu2xMzMjICAADp16sSePXv02oiKiqJBgwbY2tpWGteW\nLVsYOXIk7du3x8LCgqCgILy9vdmyZUuNxzhs2DB8fX11f8rKyti4cSO+vr4EBQVhYWGBm5sbo0aN\nIiUlxaA2q4uve/funDp1irKyMo4dO0aPHj3o0qULx44dQ6VS8f3339O9e3cALCws+O2338jKykKh\nUNCyZUuaNWtW43EK8aKQewCEEEKIZ2TGjBkMGzaMIUOGPHEbjRo10v3b1tZW7zWAjY0N9+7d0yt7\n+OTUzs4OR0dH8vLyuHnzJoWFhbz33nt6N92q1Wrc3d11r52cnKo88S+Xl5dH8+bN9crc3d25cuWK\n4YP7P19++WWFewAyMzM5ffo0vr6+ujKtVotGozGozerie+211ygtLeXHH3/k+PHjBAUFUVBQwLFj\nx3BycsLOzo62bdsC6K7mREVFUVBQgI+PD5MnT8bZ2bnGYxXiRSAJgBBCCPGMeHp6olQqWbRoEU2a\nNNHbZmdnR3Fxse71r7/+Wmv9Xr9+HU9PTwDu3btHfn4+jRs3xsHBAWtra2JjY+nSpUuV+5uZVb9A\nwNXVlaysLL2yrKysCuN8Us7OzgQHBzN37twn2r+6+KysrPDy8uLo0aOcPXuW6Oho7t69y6pVq3By\ncqJbt266JMnR0ZGoqCiioqK4ceMGc+bM4dNPP2X+/PlPNUYhjEWWAAkhhBDPUGRkJL/88gvHjh3T\nK2/fvj3/+Mc/uHv3LoWFhSxdurTW+ly9ejV5eXkUFxfz6aef4u7uTqdOnbCysiIsLIy4uDguX76M\nVqtFpVJx5swZrl69WqM+lEoliYmJXLx4EbVazbfffsvRo0cZNGhQrYxhyJAh7N+/n71791JaWkpZ\nWRmZmZl6N/I+bXzdu3dnw4YNNG/eHCcnJzw8PLC1tWXbtm265T8Ae/bs4dq1a2g0Gho0aIClpSXm\n5ua1Mk4hjEGuAAghhBDPkKOjIxERESxatEivfMKECcydO5d+/frh7OzMlClT2LlzZ630qVQqiYyM\n5MaNG7z66qvExsZiYfHgv/xp06axYcMG3nvvPfLy8rCysqJdu3ZMmzatRn0MHz4cjUbDjBkzuH37\nNu7u7ixevJhXX321VsbQoUMH4uPjSUhIICYmBrVajZubG4MHD661+Hr06MGnn36qu9m3vOybb77R\nSwDS09OJi4sjPz8fGxsbunbtWuP5EuJFoigsLNQaOwghhBBCCCHE8yFLgIQQQgghhDAhkgAIIYQQ\nQghhQiQBEEIIIYQQwoRIAiCEEEIIIYQJkQRACCGEEEIIEyIJgBBCCCGEECZEEgAhhBBCCCFMiCQA\nQgghhBBCmBBJAIQQQgghhDAhkgAIIYQQQghhQiQBEEIIIYQQwoT8L7Tj0mrdPzo1AAAAAElFTkSu\nQmCC\n" } } ], "source": [ "plt.figure(figsize=(6,4))\n", "top_universities = data['Institute'].value_counts().head(10)\n", "sns.barplot(y=top_universities.index, x=top_universities.values)\n", "plt.gca().set_facecolor('#f4f4f4') \n", "plt.gcf().patch.set_facecolor('#f4f4f4')\n", "plt.title('Top 10 Universities by Number of Fellows')\n", "plt.xlabel('Number of Fellows')\n", "plt.ylabel('University')\n", "plt.show()" ], "id": "ca68b39f" }, { "cell_type": "markdown", "metadata": {}, "source": [ "Trend over time" ], "id": "b6751365-d188-41c3-a948-c5c5ce0281c0" }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [ { "output_type": "display_data", "metadata": {}, "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAt0AAAHBCAYAAAC1ywePAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90\nbGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA7E\nAAAOxAGVKw4bAACGhUlEQVR4nO3dd3hUZdoG8Htm0ntCQhKSUENAkGIQUEBWQMVVpNhXxYYK6FoW\n/XR3dS2oa1tY7Nhd13VF1rYKAioudgFRRIGEBCGFBNJ7pp7vj8k5mUmdduaUuX/X5XVJCMmbNyeT\nZ965z/MYmpubBRARERERkWyMSi+AiIiIiEjvWHQTEREREcmMRTcRERERkcxYdBMRERERyYxFNxER\nERGRzFh0ExERERHJjEU3EREREZHMWHQTEREREcmMRTcRERERkczClF4AEelbfn5+v++TmZmJDRs2\nBGE1Pbv22msBAC+88EJAPt62bdvw9NNPo6SkBBaLBdu2bUN8fHy391u7di2ef/75Hj/Ge++9h8GD\nB3v0+f773//i3nvvxYcffohBgwYBAM4++2yceOKJuO+++3z/QoKgqqoKL774Ir766itUVVUhLi4O\nEydOxFVXXYXjjz9e6eUBcO5lRUVFv++3a9cu5Ofn47rrrsOyZcuCsDIi0hIW3UQkq1dffdXtz7fd\ndhtGjhyJpUuXSm+LiIgI8qrkY7PZcNddd2H8+PG44447EB4ejpiYmD7/zcsvvwyj0f2Fx4yMDDmX\nqQqFhYVYvnw5YmJicOWVV2LYsGGorq7G22+/jauuugr33HMP5s2bp/QysWrVKlgsFunPDz/8MOx2\nO+68885u7/vqq68iPT09mMsjIo1g0U1Esho/frzbn8PDw5GUlNTt7a7sdjsEQUBYmPYeoo4dO4aW\nlhacfvrpmDRpkkf/5vjjj9fk1+oPq9WK//u//0NcXBz+8Y9/ICkpSfq7008/HbfffjseeOABHH/8\n8Rg6dGhQ1mSxWHp8Ajh69Gi3P8fGxsJut/d4Dfd1XRNRaGOmm4gUl5+fj6eeegqvvPIK5s2bh6lT\np6KoqAgA8P3332Pp0qWYMWMGpk2bhuuvv176O9G1116Lq6++Gt999x0uueQSTJs2DRdccAG2bt3a\n7XNt3rwZ5557LqZOnYrzzz+/x/fpTVVVFf7yl79g9uzZmDp1Ki688EK3WMzatWulk9mVK1ciPz9f\niq74qq6uDg8++CDmzp2LqVOn4txzz8Xbb7/t08f6+eefsWzZMkyfPh3Tpk3D0qVL8fPPP0t//+mn\nnyI/Px9Hjx6V3rZ69Wrk5+fj3Xffld727bffIj8/H8XFxQCAw4cP49Zbb8WcOXNw0kkn4ayzzsLt\nt98Om83W61q2bt2K0tJS/P73v3cruAHAaDTijjvugMPhwBtvvAEA+Mc//oEpU6agvr6+28c677zz\n8Ic//EH6c1tbGx5//HHMmzcPU6ZMwbx58/Diiy/C4XBI77Nz507k5+fj008/xf3334/Zs2fjtNNO\n82wj+5Cfn4+1a9dKf167di3y8/Px66+/4vrrr8e0adNw1lln4f333wcAfPjhhzj33HMxffp0XHfd\ndSgtLe32Md9++21cdNFFOOmkkzB79mzcd999aGho8HutRBRcoXW0QkSq9cEHHyArKwt/+MMfEBUV\nhbS0NHzxxRdYsWIFZsyYgQceeACA8+X7JUuWYN26dW4RjLKyMjz22GO46qqrkJSUhNdffx133HEH\n3n77bSkb/d133+HPf/4zZsyYgT/84Q+oq6vD3/72N9hsNgwZMqTP9bW1teHaa69FY2MjbrjhBmRk\nZGDjxo34y1/+gvb2dpx33nlYtGgRcnNzcfvtt+Oaa67BjBkzEBcX1+/X7nA43ApUo9EIo9GI5uZm\nXH311TCbzVi6dCmysrLw9ddf46GHHoLVasXFF1/s8f4WFhbi2muvxbBhw3DffffBYDDglVdewbXX\nXot//OMfyMvLQ35+PgwGA3bs2CE9edixYweioqKwY8cOLFq0SHrbgAEDMGLECADATTfdhISEBPz5\nz39GUlISjh07hi+//BKCIPS6nu3bt8NkMmHGjBk9/n1aWhpGjx6NHTt2AAB++9vf4sknn8SWLVtw\n4YUXSu+3d+9eqaAFnPGeG264Ab/++iuuueYa5ObmYs+ePXjxxRfR2NiIFStWuH2eRx99FNOnT8f9\n99/vFiEJtDvuuAOLFi3C5ZdfjvXr1+O+++5DSUkJvv/+e9x4442w2Wx47LHHcOedd+K1116T/t0T\nTzyB119/HRdffDFuueUWHDt2DM888wyKi4vxyiuvwGQyybZmIgosFt1EpAqCIOCZZ55BVFSU9LbH\nHnsM+fn5+Pvf/y697cQTT8T8+fPxz3/+E//3f/8nvb2+vh4vvviiVGAfd9xxOOOMM/Dxxx9jyZIl\nAJynjkOHDsXf//53KUM9dOhQXHnllf0W3e+//z5KSkrw/PPP48QTTwQATJ8+HTU1NXjmmWewcOFC\npKenw2w2AwCys7M9jhqcdNJJbn/+7W9/iwcffBD//ve/UVFRgbfeekv6uqZOnYrm5mY8//zzOP/8\n8z2OpbzwwgsIDw/Hc889J93UOXXqVMybNw/PPfccVq1aheTkZOTm5kpFd0NDAwoLC3HppZdi06ZN\n0sfasWOHFJ2pq6tDaWkp/v73v+M3v/mN29fQl6NHjyI5ORnR0dG9vs+gQYPw+eefAwAGDhyIyZMn\nY8OGDW5F94YNGxAfH49TTjkFALBp0yb8+OOPeOGFF6Q1Tp06FQDw/PPP48orr0RKSor0748//njc\nfffd/W+gny6//HLpicyYMWPw+eef45133sEHH3wgPTGrrq7GY489hiNHjmDQoEE4cuQIXnvtNVx3\n3XW47rrrpI81ZMgQXH311fj8888xa9Ys2ddORIHBeAkRqcK0adPcCu6SkhKUlZXht7/9LWw2m/Rf\nVFQUxo0bhx9++MHt3+fk5Lh1+0hJSUFKSgoqKysBOHPiv/zyC0477TS3mxbHjx8vdfzoyw8//ICB\nAwdKBbforLPOQl1dHQ4ePOjT1w04oxOvv/669J94avv111/j+OOPx6BBg9z24OSTT0Z9fb1Xn3PX\nrl045ZRT3LqoxMXF4Te/+Q127dolvW3y5MnYuXMnAGcEIz4+Hpdeeimqq6tx8OBBtLS0YP/+/dI+\nJCUlITs7G0888QTeeecdlJSU+LwP/Tn77LOxZ88e6XPYbDZs3rwZp59+upTF/uabb5CZmYkJEyZ0\n2zObzYY9e/a4fcxgFa3Tp0+X/j8hIQHJyckYN26c2yshYnZdjPd8++23cDgc3X4Gjj/+eMTGxrp9\n34hI/XjSTUSqkJqa6vbn2tpaAM5s9MqVK7u9f9fuHomJid3eJzw8XIoM1NfXw2azuZ1yinp6W1cN\nDQ3d1ggAAwYMAAA0Njb2+zF6c9xxx/V4Yl1bW4vS0lJMmTKl1zV5qrGxsdf1u6598uTJeOONN1BW\nVoadO3di0qRJSE9Px9ChQ7Fz505kZmbCZrNJazIYDHjmmWfw3HPP4amnnkJ9fT2ysrJw+eWX44IL\nLuh1Penp6fjuu+/Q1tbW62n3kSNH3DqBzJkzBw899BA2bNiA5cuX49tvv0Vtba1bh5Pa2lpUVFT0\numddM+E97YkcuraMDA8P7/FtAKRrVvwZWLBgQY8fk7luIm1h0U1EqmAwGNz+LBbRN954oxQPcOVt\nt4+kpCSEhYVJhYyr2tpaZGZm9vnvExMTcfjw4W5vr6mpAeA8vQy0xMREpKSkuMVoXPUXiXGVkJAg\nrdVVTU2N29rz8/NhMpmwY8cO7NixA+effz4AZzG+Y8cOZGZmYuDAgW6vKmRnZ+P++++HIAgoLCzE\nunXr8NBDD2HQoEFuJ7yupkyZgnfffRdffvklTj/99G5/X1VVhf3792PhwoXS26KjozFr1ix89NFH\nWL58OTZu3Ijs7GxMnDhRep/ExERkZWXhkUce6fHzdv0+d73u1ES8wfSZZ57p8frq6YkmEakXi24i\nUqWhQ4di0KBBKC4uxlVXXeX3xzOZTBg7diw++eQTLF26VIqY7NmzB0eOHOm36M7Pz8fHH3+MH3/8\n0a3I27RpE1JSUjB8+HC/19jVtGnTpBtGPTmN78ukSZPw1VdfoaWlBbGxsQCAlpYWfP75526tDePj\n4zFq1Chs3rwZBw8exOTJkwE4i+6//vWvPUZsRAaDAaNGjcKKFSvw3nvvoaioqNeie/bs2cjOzsZT\nTz2FKVOmuBWQDocDjz76KAwGA373u9+5/bt58+Zh48aN+Prrr/G///0Pixcvdvv7adOmYevWrYiO\njsawYcO83ygVmTp1KoxGIyorK7vl/olIe1h0E5EqGQwG/PGPf8SKFStgtVpxxhlnICkpCTU1Ndi9\nezcyMzNx2WWXefUxly1bhuuvvx4rVqzAeeedh7q6Oqxdu9ajiMH8+fPx73//G7fddhtuuOEGDBw4\nEB999BG+/fZb3HnnnbJ0kbj00kuxZcsWLFmyBJdeeimGDBmCtrY2HDp0CD/88IPbDab9ueaaa/DF\nF19g2bJluPLKKwE4s+Tt7e1uN+kBzptVX3vtNaSkpEgdSiZNmoSGhgbU19e7FcKFhYX429/+hjPO\nOAM5OTmw2+344IMPEBYWJhXsPQkPD8ejjz6K66+/HosXL8bll1+OYcOGoba2FuvXr8cPP/yAv/zl\nL90K5ylTpiAtLQ0rV65Ee3s7zj77bLe//+1vf4v//ve/WLZsGRYvXoyRI0fCZrOhtLQUn3/+OVat\nWtXnzZtqkpOTgyuuuAKPPPIIDh06hEmTJiEiIgJHjx7Fd999h4ULF/a5x0SkLiy6iUi1ZsyYgRde\neAEvvfQSVq5cCbPZjAEDBmDcuHE444wzvP54U6dOxYMPPojnnnsOt912G3JycnDbbbfh3//+d7//\nNjo6Gi+88AIef/xxPPnkk2hpacGQIUNw//33dyv8AiU+Ph6vvvoqnn/+ebz66qs4duwY4uPjMWTI\nEMyZM8erj5WXl4fnn38eTz/9NO6++24IgoBx48bhhRdeQF5entv7Tp48Ga+99prbibbY2eTAgQNu\nhV5qaioyMjLw+uuv49ixY4iIiEBubi7WrFmDMWPG9Lmm0aNH49///jdefvllvPLKK25j4F988UVM\nmDCh278xGo0488wz8c9//hPjx493i7kAzmL+6aefxiuvvIJ33nkH5eXliI6ORnZ2NmbMmCHlprXi\nxhtvxLBhw/DWW2/hrbfegsFgQHp6OqZMmdLtaycidTM0Nzf33kiViIiIiIj8xpaBREREREQyY9FN\nRERERCQzFt1ERERERDJj0U1EREREJDMW3UREREREMtNly0CHwwGHwwGDwaDqaWNEREREpG2CIEAQ\nBBiNRmnwWk90W3QXFRUpvQwiIiIiChG5ubmhV3SLp9v9ffFqJD5h0OLa1YD75x/un3+4f/7h/vmH\n++cf7p//QnUPxa+7v3SFrovu/o751UzLa1cD7p9/uH/+4f75h/vnH+6ff7h//gvVPeyv6A69HSEi\nIiIiCjIW3UREREREMmPRTUREREQkMxbdREREREQyY9FNRERERCQzFt1ERERERDJj0U1EREREJDMW\n3UREREREMmPRTUREREQkMxbdRAHU0GbFr9WtaGizKr0UIiIiUhFFxsBv3rwZ69atw4EDB9DS0oLt\n27cjLMy5lD179uDFF1/E3r170d7ejszMTFx66aVYsGCBEksl8sjh2las+uQgPiushkMAjAZg9qhU\nrJgzHENSYpReHhERESlMkaI7Pj4eF154Idrb27Fy5Uq3v2toaMCcOXNwzz33IDk5GTt37sSKFSuQ\nkJCAWbNmKbFcoj4drm3FRS/tQqvFDofgfJtDAD4rrMF3h+qxbkk+C28iIqIQp0i8ZNq0aTjzzDOR\nnZ3d7e9mzJiB+fPnIyUlBQaDAZMnT8bkyZOxc+dOBVZK1L/Vnx5Eq8UOu1hxd7A7BLRa7Fj96UGF\nVkZERERqochJtzeam5vx888/49RTT/X63zocjsAvSGbimrW4djUI9v41tFmxtaAaXeptid0hYGtB\nNepazEiMDg/KmvzB688/3D//cP/8w/3zD/fPf6G6h55+vaouuq1WK/74xz9i6NChOOuss7z+90VF\nRTKsKji0vHY1CNb+lTfZei24RQ4B2LX3ALLiVf3j5obXn3+4f/7h/vmH++cf7p//uIc9U20V0NbW\nhttuuw1WqxVr1qyRbrT0Rm5uLoxGbTVocTgcKCoq0uTa1SDY+5feZoVxc+8n3YDzpsr8MSM1c9LN\n68933D//cP/8w/3zD/fPf6G6h+LX3R9VFt2NjY246aabkJCQgNWrVyMyMtKnj2M0GjX7Tdfy2tUg\nWPuXHBuJ2aNS8VlhTbdMNwCYjAbMyhuA5FjfrmGl8PrzD/fPP9w//3D//MP98x/3sGeK7IjdbofZ\nbIbV6uxlbLVaYTab4XA4UF1djWuuuQbp6elYtWqVzwU3UbCsmDMcMREmGHr4O6PB+fdEREQU2hQ5\n6d6wYQPuvfde6c/Tp08HADz//PP4/vvvUVRUhLKyMrebJ0844QQ89dRTQV4pUf+GpMRg3ZJ8XPTi\n92gy2wE4i22HAFjtAqqbLWwZSEREFOIUKbrnz5+P+fPn9/h3J554IpYuXRrkFRH5Jyc5GraOeMm/\nrz4BQ1Ji8I9vy/Dcl4dx53/3453rJiMmwqTwKomIiEgpDNwQBcCR+na0WR1Ii4vA+KxEJEaHY9nM\nIcgbGIvSunY8/hl7dRMREYUyFt1EAVBU1QIAyE2Lld4WYTLiwfmjYTIAr28vx87D9QqtjoiIiJTG\nopsoAIqqWgEAI9Lcs9tjMuNx7YwhAIC7PtiPVos96GsjIiIi5bHoJgqA4o6T7hEuJ92ipacwZkJE\nRBTqWHQTBUBxdfd4iSjCZMRf549GmNHAmAkREVGIYtFN5CeHIOBgdUe8JLXn1oDHZcbj2umDATBm\nQkREFIpYdBP5qdylc0lfo96vc4mZrNnKmAkREVEoYdFN5KfiHjqX9MQ1ZvKvHeXYwZgJERFRyGDR\nTeSn3jqX9MQ1ZvIXxkyIiIhCBotuIj95etItuu6UIRiV7oyZ/J0xEyIiopDAopvIT0V9tAvsiTg0\nJ8xowBs7yrH9UJ2cyyMiIiIVYNFN5AfXziW5HsRLRMdlxOO6GWLMpIAxEyIiIp1j0U3kh/L6drTb\nHBgYH4GEqN47l/Tk2hnOmElZPWMmREREeseim8gPUrQk1bNoiSvGTIiIiEIHi24iPxR70bmkJ8dl\nxGPpjCEAnDGTFostYGsjIiIi9WDRTeQHbzuX9OSaGYM7YyafMmZCRESkRyy6ifxQFICi2zVm8u+d\nR/AdYyZERES6w6KbyEeunUt8jZeIGDMhIiLSNxbdRD7yp3NJT66dMRij0+NQXt+O1YyZEBER6QqL\nbiIfBSJa4ircJWbyJmMmREREusKim8hHYtE9PNW/aImr0RlxWHoKYyZERER6w6KbyEcHq8RJlIE5\n6RZdO30wjstgzISIiEhPWHQT+SjQ8RJR15jJt78yZkJERKR1LLqJfBDIziU9GZXeGTO5+0PGTIiI\niLSORTeRD8rqAtu5pCeuMZNVnzBmQkREpGUsuol8UFwtT7TElWvMZN33jJkQERFpGYtuIh+Iee4R\nMhbdgDNmskzqZrIfLWbGTIiIiLSIRTeRD4o7OpeMCGC7wN5cM30wxmTE4UiDGavYzYSIiEiTWHQT\n+UCuziU9YcyEiIhI+1h0E3nJ7pC3c0lP8tLjsHwmYyZERERaxaKbyEvl9e0w2xxIl7FzSU+WTGPM\nhIiISKtYdBN5KVg3UXbFmAkREZF2segm8pLYLjDYRTfAmAkREZFWsegm8pLYuSQ3SHnurlxjJn/7\npFiRNRAREZF3WHQTeSmYnUt64hozeWtXBb45WKvIOoiIiMhzLLqJvODauWR4EHp09yYvPQ7XzxwK\nAPjLhwWMmRAREakci24iLyjVuaQnS6bnYGxmHCoYMyEiIlI9Ft1EXlCqc0lPwozOmEm4qTNm0tBm\nxa/VrWhosyq9PFKA0t//UP/8pCylv/9Kf35SvzAlPunmzZuxbt06HDhwAC0tLdi+fTvCwpxLaW9v\nx913342CggKUlZXh6quvxg033KDEMom6KVZR0Q0AIwc6YyaPf/Yrbli3B1a7AIcAGA3A7FGpWDFn\nOIakKBeDoeA4XNuKVZ8cxGeF1Yp8/0P985OylP7+K/35STsUOemOj4/HhRdeiFtvvbXb3xkMBowf\nPx533XUXxo4dq8DqiHpXXK1s55KenDY6FUYDYLY5C24AcAjAZ4U1uOilXThc26rsAklWh2tbcdFL\nu/C/AzWKfP9D/fOTspT+/iv9+UlbFDnpnjZtGgBg586d3f4uMjISl112mfT/RGqidOeSnjz+2a89\nvt3uENBqsWP1pwfx+AXHB3lVFCyrPz2IVosddvE3fge7Q0Cr2YZHthThoQXHyfb5H9lShFazDXb3\nT+/T53c4HGi2ONDQZoXR6NmZUJ+fn9e/7gXy+uf1R3JTpOgOFofDofQSvCauWYtrVwM598+1c8mw\nlGhVfI8a2qzYWlCNLr9vJHaHgK0F1ahrMSMxuv8bP3n9+SfY+9fv918Ath2oxbS/fRWU9QTu8x8L\nzOf38vrXulD7+ZXv+uf156tQuwZFnn69ui66i4qKlF6Cz7S8djWQY/8qmm0w2xxIiTaiouQgKgL+\nGbxX3mTr9ReOyCEAu/YeQFa85z/uvP78E6z98+T7DwDRYYDRYAj453cIAto86Fap5Of35frXulD5\n+dXC9R+K1x8QOtegt3R9FeTm5nr8EpFaOBwOFBUVaXLtaiDn/pUX1gCoxujMROTl5QX0Y/sqvc0K\n4+beT3oA5009+WNGenzSzevPd8HeP0+//x/fdLIsJ20NbVbM/Ps3Afv83u6fp5/f0+tf60Lt5zfQ\n1z+vP/+F2jUoEr/u/ui66DYajZr9pmt57Wogx/4dlG6ijFXN9yY5NhKzR6Xis8KabplGADAZDJg1\nagCSY727P4LXn3+CtX/9fv+NBszK8/77r/Tn93T/lP761SpUfn7Vfv2JXUxC7foDQuca9JYiO2K3\n22E2m2G1OntZWq1WmM1mKRNjsVikPzscDrf3JVJKZ49u9XQuAYAVc4YjJsIEk7H7y6dGo/PvSb9W\nzBmO6PDuD+UmowExESbZv/+9XX+h8vlJWdL3v8vDn9LXH+CMllx5Urasn5+0RZGie8OGDTj55JOl\n/tvTp0/HySefjF27dgEAFi1ahJNPPhk//PADXnnlFZx88sm4/vrrlVgqkaTY5aRbTYakxGDdknzM\nyhsA8XHfaAAMAKx2AWV17Yquj+Q1JCUGV0x1/8VuNACz8gZg3ZJ82fsE93b9KfH5XcueYH1+Upb4\n/c8fnCi9TQ3X/4BYZ5zkpa9LIQgeBM8pJCgSL5k/fz7mz5/f699v2LAhiKsh6p9r55IRqeoqugHn\nA//jFxyPhjYralusSIkNx1vfH8Gaz37F3R8W4L2lkxEfpes0WUjbUdIAALjrzJE4aVgyUmLDg5oh\n7en6U+Lz/3ykERe9tAuZCZFs0xZChqTE4PwTBmHH4QZMH56Mx84do/j132a1Y8HaHfissAYf7jmK\nc8ZnBG09pF4M3BB5oKy+DWabAxkJkaouXhOjwzEsNQaJ0eG4aloOjh8Uj8pGMx77pFjppZFMqpst\n2Hm4HmFGA84eN1D6/ivB9fpTwsiBzifEVc0WOHi6GFJK69oAAKMz4lRx/WckROGOM3IBAH/dXISq\nJrMiayJ1YdFN5IHiKucp9/BU7bxUHWY04sH5oxFuMuDtHyrwZXGt0ksiGXyyvwoOAZg+IhkJUaHR\nIaE3kWEmJMeEw+YQUNNiUXo5FERl9c4YXXZytMIr6bRoQgZOyU1BY7sN924oZMyEWHQTeaJYhZMo\nPZGbFosbfjMUAHDPhwVoavegqTJpyqa9VQCAuccNVHgl6pCR4OwUUdnIk8VQUtZx0p2TFKXwSjoZ\nDAbce3Ye4iNN+N8BZ8yEQhuLbiIPqHH8u6euOjkH4xgz0aWqZjO+L3FGS2aNGqD0clQhPd5ZdB9l\n0R1S1HjSDYAxE3LDopvIA0Ud8RK1tQv0RJjRiAcYM9GlT/ZXd0RLUkI+WiLKSORJd6gx2+w42miG\nydD5SoeaLJyQgZmMmRBYdBP1y+4Q8GuNejuXeCI3LRa//80wAIyZ6MlmKVqSpvBK1CMjnkV3qDlS\nb4YAYFBSFMJN6itrnDGTUVLM5APGTEKW+q5OIpXRSueS/lx5cnZnzOTj/sfVkroxWtIzZrpDj9i5\nJDtJXdESV+kJkVLM5KHNRTjGmElIYtFN1I9iDUdLXLnFTH6sxBdFNUovifzAaEnP0hOY6Q41pfUd\nRXeyem6i7AljJsSim6gf0vh3jUZLXLnGTO7dUMiYiYYxWtKzjARn4VXZyEmsoUKcuqvmk27APWay\njTGTkMSim6gfWm0X2BvXmMmjjJloUlWzGTsP1yPcxGhJV+kJEQCAY00ckBMqpHaBKj/pBjpiJnMZ\nMwlVLLqJ+iF2LsnVeLxEJA7NiTAZ8A5jJpr0yf5qCACmDWe0pKvIMBNSxAE5zRyQEwrU2i6wNwvH\nZ+A3IxkzCUUsuon64Nq5ZLgO4iWiEWmx+P2p7GaiVZv3HgMAnDmG0ZKeiLnuSp4i6p4gCNKNlFo4\n6QacMZN7zuqMmfz3J8ZMQgWLbqI+lNXpo3NJT648KQfjs+JxtMnCmImGOKMlDc5oSV6q0stRJXFA\nTmUDi269q2mxos3qQEJUmKZe9UlPiMQf544EADy8hTGTUMGim6gPxdX66FzSE5PRwJiJBonRkunD\nU3T3RDBQxAE5R1nI6F5ZvbZOuV0tGJ/uEjMpYMwkBLDoJuqDlse/e2J4aixudImZNDJmonpitGQu\noyW94oCc0KGVziU9cY+Z1OJ9xkx0j0U3UR/01C6wN1e4xEwe+7hY6eVQHxgt8QwH5IQOaTCOBk+6\ngS4xk80H2F9e51h0E/WhWGedS3riGjN576ej+L6CD/pq9fE+Rks8Id1IyV7duqe1ziU9EWMmTWY7\n7tvImImesegm6oVr55IROo2XiFxjJmt3NjBmolJb9jFa4glxQA5PDfVP7NE9WMNFtzg0JyEqjDET\nnWPRTdQL184lcZH6P1UUYya17Q48ypiJ6lQ1MVriKQ7ICR1SvCRJm/ES0cD4SPzxDOfQHMZM9ItF\nN1EvpDy3jqMlrkxGA+6fNwrhRuD9n47i8wPsZqImH7Nricc4ICc0mG12HG2ywGTo7FijZfPHp+M3\nIwegyWxnNxOdYtFN1AuxXaBeO5f0ZHhqDH53fDwA4J4NBWhstyq8IhKJ0RIOxPEMB+ToX3lHnntQ\nUhTCjNovZ5wxkzwkRIXh86JavPdTpdJLogDT/lVKJBO9twvszby8GEzISsCxJgse2cKYiRq4RktO\nZbTEI1IHEw7I0S0ttwvsjWvM5JHNRYyZ6AyLbqJedLYLDI14ichkMOD+c/Kc3Ux2V2IbYyaKE6Ml\nM0YwWuIp8aSbA3L0q7Re2+0Ce8OYiX6x6Cbqgd0h4Nfq0Ohc0pNhA2Jw0yxnN5N7NxSgoY0xEyVJ\nA3GOY7TEU+zVrX+lHSfdORruXNITxkz0i0U3UQ/K6tpgsQsh07mkJ5dPzcHEbDFmUqT0ckJWVZMZ\n35cwWuItTqXUvzKddC7pycD4SPxpLmMmesOim6gHoda5pCcmowEPnDMakWFGvP/TUcZMFLJlfxWj\nJT7ISHQWYhyQo19lOj3pFp0zLh2ndsRM7mHMRBdYdBP1oKgq9DqX9GRYagxu6hiac8+HjJkoYcve\nKgCMlngrveOkmyeE+iQIAsp0mukWucZMviiqxXu7GTPROhbdRD0org7NziU9WTw1GxOzE1DVzJhJ\nsInRkgiTAbNGMVriDdcBOXYHTwj1pqbFijarAwlRYUiICld6ObJJi4/EnztiJg9vKeIrNxrHopuo\nB6HaLrAnJqMBD85nzEQJYrRk+oiUkL23wFeuA3JqWzggR2/EU+4cnZ5yu5o3Lh2z8gag2WzHPR8W\nMmaiYSy6ibpw7VwyPMTaBfZmqEs3E8ZMgkeMlpw5ZqDCK9EmsYNJBSMmulNaKxbd+sxzuzIYDLjn\nLGfM5Mtixky0jEU3URfsXNKzxVM6YyYPM2YiO9doyal5A5RejiZJvbpZdOtOab3+BuP0hTETfWDR\nTdQFoyU9c42Z/Peno/issFrpJemaa9cSPvnzDXt165fULjAE4iUixky0j0U3URdi55JQbhfYG9eY\nyX0bChkzkdFmsWsJoyU+41RK/Sqr13e7wJ50jZm8y5iJ5rDoJuqCJ919WzwlGyfkdMRMNjNmIodj\nTWbsYrTEb5kJHb26G/hSvN7oeTBOX9LiI3HnmSMBAI9sKUIFr21NYdFN1AXbBfbNdWjOf/cwZiKH\nj/cxWhII4kl3JU+6dcVss+NokwVhRgMyEiOVXk7QnX38QMwWYyYcmqMpLLqJXLh2LhnBziW9Gjog\nBjd3xEzu3VCIesZMAmrzPkZLAiGdo+B1SZxEmZkYiTBj6JUxBoMBd5+dh8ToMHxVXMeYiYaE3tVK\n1IdSl84lsTxh7NNlHTGT6mYLHmHMJGAYLQkccUBOFQfk6Eoo5rm7SouLxJ/nMmaiNSy6daahzYpf\nq1t5g5uPipnn9pjJaMCD54xGlEvMROnrT+nPHwiMlgSO64CcGg7I0Y1QzXN31TVmUt9q0fzjn7/U\n/jtAkUf0zZs3Y926dThw4ABaWlqwfft2hIV1LqWwsBCPPPII9u3bh7i4OJx77rlYunQpDAaDEsvV\nhMO1rVj1yUF8VlgNhwAYDcDsUalYMWc4hqQwJuEpsXNJLjuXeGTIgBjcPHsYHtlSjBX/+QVWhwBB\ngetPT9c/oyWBlZEQidpWKyobzRgYH3r5Xz2SenSH8Ek30Bkz2X54O74qrsOMVV9DgLYf/3ylld8B\nipx0x8fH48ILL8Stt97a7e9aWlrw+9//HhMnTsTWrVvx9NNP47333sO//vUvBVaqDYdrW3HRS7vw\nvwM1EF9BdQjAZ4U1uOilXThc26rsAjVE7FwygifdHjtlxACYDIDF7iy4geBef3q6/l2jJbMYLQmI\ndPbq1h2edHdqtdhh63jgEwNUWn3885WWfgcoUnRPmzYNZ555JrKzs7v93datW2G327F8+XJERUVh\n5MiRuPzyy/HWW28psFJtWP3pQbRa7N0yi3aHgFaLHas/PajQyrSH7QK9t+aznq8vu0NAq9mGR7YU\noaHNKtt/j2wpQqvZpovr3zVawnsKAiODUyl1p7Sj6B4c4ifdgPP3v9Xe/X4FLT7++UpLNZDqHtUL\nCgowatQot7jJ2LFjUVZWhubmZsTFxXn8sRwOhxxLlJW4Zk/X3tBmxdaCavR2j5DdIWBrQTXqWsxI\njA4P1DJVy9v9c2VzCDhU43xGPCwlSpPXj78Cfv0JwLYDtZj2t68CtUSvBPv69+f6A4BNe48BAM44\nLo3XX4AMjHfeTFnZ2K77PZVj/9RGEASpe8mgxMiAfq1a2z81/v4P9h6qZQ88/XpVV3S3tLQgPj7e\n7W3in1taWrwquouKtNtRwdO1lzfZer3YRA4B2LX3ALLiVfftlo0v3/sjTTZY7AJSY4woP6yeZ8ZK\nCOT1BwDRYYBRhnsyHIKANlt/7xP869+X66+2zY4fShsRbgSyDbUoLKwP/MI0IqCP3S3OU9ED5dUo\nLOznYtEJLf/u609dux3tNgfiIgyoKDmIChk+h1b2T82//4O1h2reg54ov4IuYmNjcfToUbe3NTU1\nSX/njdzcXBg11sPT4XCgqKjI47Wnt1lh3Nz7szzAeUNB/piRIXPS7c3+uSrdXw2gGqMyEpGXlyfP\nAlVOruvv45tOluX6a2izYubfv1HN9e/P9fevHeUQUIVTcgdgwtjRMq1Q3fzZv940RNYD239CqxCh\n+59rOfZPbX4sawBQhSEDYgP+/dTa/qnx93+w91AteyB+3f1RXdE9atQofPTRR7DZbFLEZO/evcjO\nzvbqlBsAjEajJn5weuLp2pNjIzF7VCo+K6zpsQ+tyei8ISs5NrTu2vfle1/cES0ZOTBWs9dNoGjl\n+uv38xuAWaNSg379+3L9bdnnnOw5d8xAXn8BfOwelOTM/VY2mUNmX7X8u68/5fXObH5OcrRsX6NW\n9k/px9++BGsP1bwHPVHkqrLb7TCbzbBanX0UrVYrzGYzHA4HZs+eDZPJhLVr16K9vR1FRUX45z//\niQsvvFCJpWrCijnDERNh6vZ2k9GAmAgTVswZrsCqtKdYahfImyi9IV5/JqN7fCRY119vnx9wttRa\nMVv91//RRjN+KGXXEjmIUyk5IEcfpHaBSbyJElD+8VcNtFQDKVJ0b9iwASeffDJuuOEGAMD06dNx\n8sknY9euXYiNjcVTTz2FXbt2Yfbs2Vi+fDnmz5+PSy+9VImlasKQlBisW5KP8C4/dLNGDsC6Jfmq\n6lGpZmwX6Bvx+puVNwDiJWg0ALPygnP99fb5TQbnzbG/VDTJ+vkD4eP9zq4lp+QOYNeSAIsIM2JA\nLAfk6IXYuSQnhe0CgZ4f/wBg2vDkkPn9PyQlBi9dOt7tbcH8HeQNRR7d58+fj/nz5/f693l5eXj5\n5ZeDuCLti48Mg9UhIDrciHCTEY3tNvzf6SNCfniAp2wOB37tiJeMSFXPD6hWDEmJweMXHI+GNitq\nW6xIiQ0P6j0EPX3+LfuqcO+GQjy46QCmDE1GalxE0Nbjrc17xYE4aQqvRJ/S4yNR08IBOXogdi7h\nSXcn18e/K177EQeOtWDpjCGqKjZl13Gj/ohU514E+3eQp9QfWiKPFFd3RiNOyEkEAPxY1qjkkjSl\nrK4dVruAzMRInjT6ITE6HMNSYxR7sHP9/OefkIlpw5NR32bD/RsLIQjqjBYcbTRjV0e05NSRjJbI\nIYMDcnSjrL7jpDuZJ91dJUaHI7fj0Eh8RSBUlNY6v94hKdGK/g7qD4tunXAd6jIxOwEAsLucRben\nOBRHfwwGA+6bNwqxESZ8UlCNjb8cU3pJPfp4v/OUm9ES+aRzQI4utFvtONZkQZjRIH1PyV1Ox6vb\n4isCoaK048mY2l/dZ9GtE5155BhMEIvusgYll6Qp0v4xWqIrgxKjcPsZIwAAD246gKpm9RVdjJbI\nLyPBeSpa2RhahYjelHfcRJmZGIkwDXQXUYJYdIpFaKgQn2TksOimYCh2Oak9flA8jAag4GgL2qx2\nhVemDUXsXKJb503MxPQRyWhos+H+jQdUFTNhtCQ4OApeH8rqtVFYKSm7I3YTaifdWokdsejWCbHd\n3Yi0WMRGhCFvYJyzc8MR9XduUINidi7RLYPBgPvOdsZMPlVZzESMlsxktERWYtFdwaJb06TOJSy6\ne5XTcYNpWYiedKv9BlsW3TpQ22JBbasVMREmZHb8chEjJryZsn/sXKJ/mSqNmWza63wCcAajJbKS\nMt1N6vi+k2/Eojs7Sd2nmUpKT4hEmNGAY00WtIfIK91WuwMVDe0wABiUpO6sv9dF948//ogjR44A\nAGpra3HXXXfhnnvuQX19faDXRh5yzSMbOtrmTGSu22OltexcEgrUFjNxDsRpRGSYkdESmYkDco41\nmjkgR8Ok00yedPfKZDRgUMeTEjGOo3cVDWbYBecTjsiw7kNy1MTrovuvf/0rbDYbAODJJ5/EsWPH\nUFNTg0cffTTgiyPPuLYLFE1w6WCidHGhdsXV7FwSCsSYSVykM2ay4WdlYyZb9nV0LRmRwid7MhMH\n5NgFcECOhkm5XZ509ylHynWHRsREK3luwIeiu7KyEoMHDwYAfPnll3jwwQfx8MMPY/v27QFfHHmm\np3Z3g5OjkRwTjpoWa8g82/UV2wWGjszEKNx+ei4A4K+blY2ZbN7nLPrZtSQ4xNNu9urWJkEQeNLt\noWwp1x0av/u1kucGfCi6TSYTrFYrDh48iPj4eKSlpSE2Nhbt7aHxzVWjYpd2gSKDwYDxWWLEhLnu\nvoidS5jnDg3nTszAjBEpaGizYeUGZYbmuEZLfpPHaEkwcECOtlW3WNBucyApOgzxUXxlqC/iiW+o\nDMiRsv56POkeN24cHnnkETz55JOYMWMGAKC8vByJiYkBXxx5psilc4mridLNlMx194WdS0KLc2hO\nHuIiTdhaWKNIzMQtWhLBAiIY0qWimwdEWlTKU26PSSfdIdI2UDzR1+VJ95///Ge0tbUhMTER11xz\nDQDgl19+wZlnnhnwxVH/alssqGu1Italc4moc0gOT7p7w84loSkjIQp3nOGMmTy46QCqgtzVgtGS\n4BMH5LBXtzaJ+WTmufsn9eoOkbaB0rWhgZNur49YMjIy8OCDD7q9be7cuZg7d27AFkWec51EKXYu\nEXUOyWlGq8WOmAh139WrBHYuCV2LJmRg894qfFlci/s2FuLJC4/v9jMkh8rGdkZLFMB4ibYxz+05\n11HwgiAE5XFNKYIguMRL1H9teH3SvXz5crz22msoLCyUYz3kpc48cvdohDgkxy4Av1RwSE5PeBNl\n6HKNmXwWxJjJx/uqAQCn5DJaEkwsurVNHGuuhdyu0uIiw5AcE452mwPVzfru1tPQbkOT2XmomBIT\nrvRy+uV10T116lR88803uOKKK3D66afjzjvvxIcffoiqqio51kf96K/d3QTmuvvEdoGhTYmYiTgQ\nZ+5xjJYEEwfkaJuWOlSogThAqFTnHUzKXAYmaeFE3+ui+8orr8Szzz6L//3vf1i5ciUGDBiAxx57\nDGeddZYc66N+9NS5xNVE5rr71HkTKvPcoWrRhAyckpuCxnYb7tsobzeTysZ2/FjGaIkSOCBH28QI\nwWANRAjUIFuKmOg71y0+GcvRyHXh0xj4uro6bN26FRs3bsRHH32ExMREnHvuuYFeG3lALBr7O+ne\nXcYhOT2RnrT0EM+h0GAwGHDv2XmI74iZfLjnqGyfi9ES5XBAjna1We2oarYgzGiQXrGgvok3nOq9\ng4nWYkdeP+pfcsklKC8vx4knnoipU6fiuuuuQ05Ojhxro37UuHQuyejlgUgcklPbakVpXTsGp2jj\n2WAwuHUu4Ul3SBNjJnd9UIC/bi7CScOSkRYf+F/uYrTkzDEDA/6xqX8ZCZGoabGistGMgTJ8f0ke\n5R0RiUFJUTAZ1R8hUAPxpLtU5x1MtBY78vqku7GxEZGRkYiPj0diYiLi4+PlWBd5oLiPziUig8GA\nCdKQHOa6XYmdSwYlRvLUkbDQJWZyrwxDc1yjJTNHpgT0Y5NnOJVSm1xzu+SZUBmQU6qhdoGAD0X3\nhx9+iBdffBHHHXccNm3ahAULFuCyyy7D008/Lcf6qA/9RUtE0pCccua6XRVxKA65cI2Z/O9ADT4I\ncMxEGojDaIliMhKdv5g5IEdbxOEnWsntqkF2cmgMyNHateFTpnvw4MG48MILcdVVV+Giiy5CaWkp\nXnnllUCvjfpR5GEeWcx1/8SbKd2wXSB15drN5KHNRQHtZrJ5r7PoZrREOeJJNwfkaEspT7q9lh4f\niTCjAVXNFrRZ7UovRxZWuwMVDe0wABiUqI1rw+vjlnfeeQfffvstduzYAavVivz8fFx33XU4+eST\n5Vgf9eFgdd+dS0THD0qAiUNyuimuZp6buls4IQNb9lXh86Ja3LuhEE9d5P/QnIoGRkvUgL26talU\nYx0q1MBkNCArKQqHa9tQXt+uy8OligYzHILz5zoizKcz5KDzuuh+++23cdJJJ+GCCy7AxIkTER6u\n/mbkeuVpvCQmwoS89Djsq2zGLxVNmDwkKQirU79innRTD5wxk1FYsHa7FDOZPz7Dr4/58X7nKfdM\nRksUxaJbm6RMt0Zyu2qRnewsusvq2nT5e04cc6+VPDfgQ7zkX//6F2688UZMnjyZBbeCPOlc4opD\ncty5di4ZnsqTbnKXnhCJO+Z2xkyO+RkzEaMlcxktURSLbu0RBEHK7WqlQ4VaiPtVqtNcd2fsSDvX\nhU/n8QUFBXjooYdw00034aGHHsL+/fsDvS7qR5EHnUtcTczikBxXJbVt7FxCfVo4PgO/Gel/NxMx\nWhLFaInixDaBVU0ckKMV1c0WmG0OJEWHIT6Kj9XeEAcJlem0baD4ZEJLr4B4XXR/9dVXuPzyy1FV\nVYVhw4ahuroaV155Jb766is51ke9KPYwWiKakJ0IgENyRN7uH4Ueg8GAe84ahfhIE7YdqMF/f/Kt\nm4kYLWHXEuW5DsipbuaAHC0Qx5hnM8/ttWypbaA+T7rLpHaB2rk2vP4NsHbtWqxcuRJz586V3rZl\nyxY8++yzmD59ekAXR73ztt1dTnIUUjgkR8J2geQJMWZy138L8PCWIpw8PNnroSrsWqIu4oCco01m\nTjfUAKmwYucSr4mxC72Ogtdau0DAh5PukpISnH766W5vmzNnDkpKSgK2KOqftzcBGgwGl5HwzHW7\nDhYi6ot7zKTAq1eK3KMlA2RcJXkqI8FZvFU06PP0T29KNXiaqRbiSXdZfbvuXuEWBEGTrSS9LrpT\nUlJQVFTk9rbi4mIkJycHbFHUN0EQXHp0e140TuCQHImnnV+I3GMmtXjfi5iJ60ActupUB/F0+2gA\ne7CTfKQx3yy6vRYXGYbkmHCYbQ7dxaka2m1oNjtbICfHaKeph9dF98KFC3HLLbfgzTffxJdffok3\n33wTt9xyCxYtWiTH+qgHta1W1LfZEBfpWecS0USXXHcoY+cS8lZ6QiT+OHckAODhzQc8Hq4iFt2M\nlqgHO5hoS2k92wX6QzwFLtFZxMT1lNvfOQrB5HWme/HixTAajXjrrbdQWVmJjIwMXHzxxbjsssvk\nWB/1wHUSpTcX29jMeJgMQGGID8kpqW2DzcHOJeSdBePTsWXfMWw7UIv7Nhbg6YvG9fnzx2iJOnEq\npbaIJ905GmoLpyY5ydHYc6QJZXXtmDRY6dUEjnhdDNbYKyBeVxxGoxGLFy/G4sWL5VgPeaDIxzxy\nTIQJo9LjsLeyGT8facSUoaEZCWK0hHzROTRnhxQzWTih96E54in3zJEDQvYJrhrxpFs72qx2VDVb\nEGY08KZXH3XmuvV10q3VgUkexUscDodH/1FwiO3ufOm8MT6b/bqL2bmEfDQwPhJ/PMM5NKe/mIlY\ndM89Li0oayPPsOjWjvKO7hRZSVEwGbUTIVAT8QbUMp21DdRqK0mPTronT57sUYxh586dfi+I+ufP\n+PKJWQl4c+cR/Miimyfd5JP549OxuSNmcu+GAjxzcfeYSWUjoyVq1XVADos59SrV6GmmmoiZ7lK9\nnnRrqHMJ4GHR/fzzz8u9DvKQa+eSXB/a3UlDcsqdQ3K0dANCoBRJrxTwJkrynmvM5POiWrz3UyUW\nTch0e58t+6oBMFqiRuKAnJoWK6qbLYwtqJjUuYR5bp9l6/SkW4s9ugEPi+5JkybJvQ7yUE1LZ+eS\ndC+HdADuQ3JK6towJCW0Ck+rnZ1LyH9izOTP/92PRzYXYdqwFLfibTOjJaomDsipbGxn0a1iYg45\nhyfdPkuPj0S4yYCqZgvarHZEh2v/EMBid6CioR0GAIMStXVteFR0b9++3aMPNmXKFL8WQ/0rrvat\nc4lIHJLzWWENdpc1hlzRXVrn7FySlRTFziXkF2fMpArbDtTgng0FePbicQCAqlY7fipvYrRExTIS\novBLRTMqG82YoPRiqFelPOn2m8loQFZiFA7VtqG8rh25A7Ufq6xoaIdDADITIxER5nXna0V5VHUs\nX7683/cxGAzMdAeBP9ESkVh0/1jWiPnje+++oEdStISn3OQnZ8wkDwvW7sAXHTGTU3NTsKnIeY0x\nWqJeHJCjDVrtUKE22cnROFTbhtL6Nl0U3VqOHXlUdH///fdyr6ObxsZGPPHEE/jiiy/Q3NyM8ePH\n4/bbb8ewYcOCvhY1ETuXDPfjJsBQHpJTxM4lFEAD4yPxp7m5+NP7+3HPBwVwABCnLVc0tONwbWvI\nvZqkBexgon4OQdBsbldtpLaBOsl1azl2pNpz+XvuuQcVFRV48803sXXrVgwfPhzXX3892tr0dQeu\ntwLReUMaknOsGS0WW6CWpgkH2bmEAmxCVgLCjAbYhc6CGwD2Vjbjopd24XBtq3KLox5xQI76VTdb\nYLY5kBwTjrhIRgH9IQ4W0kuvbi3Hjrwuuu12O15++WUsWLAAM2fOBAB8/fXXeOeddwK2qLa2Nnzx\nxRdYunQpkpOTERkZiZtuugnV1dX47LPPAvZ5tMbfziUicUiOQwB+PtIUqOVpQudgHJ4+UmCs3noQ\ngmu13cHuENBqsWP1pwcVWBX1JTORJ91qV6rRlnBqJJ50l+rlpFvDsSOvnz4+//zz+Pzzz7Fs2TI8\n9NBDAICcnBw89dRTOPfccwO2MEEQ3H6RiX/ev38/zjrrLI8+hhYH9ohr7mnt1c0WqXNJWmy4X1/f\n+KwE7K1sxu7SBkwenOjzx1GbvvbPtXPJ0JRoTV4fcutr/6i7hjYrthZUw9G95gbgLLy3FlSjrsWM\nxOjw4C5Og4J1/aXFOb8XlY1mXV3revr5La3tLLqD9fXoaf9cZXU8ySyta5P9awvGHopPyLISI1Xz\nvfJ0HV4X3Rs2bMCLL76IjIwMPPLIIwCArKwsHDlyxNsP1avo6GhMnToVa9euxQMPPICYmBg88cQT\nEAQBLS0tHn+coqKigK0p2Hpa+55jzlOZQbFGHDhwwK+Pn25yXrRfFVRgZpo+nv266mn/yhptsDkE\nDIwxoexQsQKr0g4t/+wEU3mTrdeCW+QQgF17DyArni+Re0ru68/a8U071mTGvoICmHQ2r0APP7+7\ni52vwkY7WlFYWBjUz62H/XPVbnUWhGW1rdhfUABjEK53ufZQEASUdByeWWqPoLClUpbPIxevfwu0\ntrYiPT3d7W12ux0mU2Dv0n/ggQewZs0aXHrppXA4HFi0aBGGDh2KpKQkjz9Gbm4ujEbVxtZ75HA4\nUFRU1OPadzaUA6jD8TkDkJeX59fniU5rw+Pbd6C4wYGRI0fqZkhOX/t3eH8VgGqMHpTo9/7pVV/7\nR92lt1lh3Nz7STcAGA1A/piRPOn2QDCvvwGxtahpsSIlc6huenXr6ee3bf9+AC2YMGIQ8vIy+33/\nQNDT/nWVsqUOta1WpAwaKk1llYPce1jfakWr7ShiI0yYdPwo1dQu4tfdH6+L7tzcXHzyySc4/fTT\npbdt27YNo0aN8vZD9SklJQUrV66U/lxbW4vXXnvNq17gRqNRsz84Pa39YI3zdDp3YKzfX9fglBhp\nKltZg1l3HRZ62r/iauf+jUjzf//0Tss/O8GUHBuJ2aNS8VlhDew9VN4mowGz8gYgOVYfRV2wBOP6\ny0iIQk2LFceaLcjU4A1ZfdHDz6+YPx6cEhP0r0UP+9dVdnIUalutKG8wIyNR/utdrj0s77gPIzs5\nKuCHvcHg9Y7ceOONuO+++3DnnXfCYrFg5cqVWLlyJW644YaALuzQoUOora0FAJSUlODOO+/E5MmT\nMXXq1IB+Hi0pCmDnDYPBgAlZCQBCp3VgIDq/EHW1Ys5wxESYYDK6n7iYjAbERJiwYs5whVZGfWHb\nQHUT2wVms11gQIidPrTeNlBcf45Gnyh7XXSPGzcOr7/+OpKSkjBp0iQ4HA6sXbsWY8eODejCfvzx\nR1xyySWYNm0ali5dilGjRuGxxx4L6OfQEtfOJSMC1HljQke/7h9Dpuhm5xIKvCEpMVi3JB+z8gZA\nrLuNBmBW3gCsW5Kvu1eR9IJFt3q1We2obrYgzGiQ2juSfzo7mGi7bWCphjuXAF7ES959910sWrQI\nADB06FDcdtttsmZpFi5ciIULF8r28bWmpsWKho7OJYF6EJqYHTon3a6dS4an8qSbAmtISgwev+B4\n1LWYsWvvAeSPGclIicpxKqV6lXecZmYlRXV7BYl8MzhZ7NWt9ZNucTCOzk+6V69e7fbnWbNmBXwx\n1DvXaEmgnuyMHRSPMKMhJIbklNS2weYQkJUUxdHcJJvE6HBkxYfxpkkNkE66G1h0q01pvbZPM9VI\njOlo/qRb47Ejj4vursMfehoGQfIR88gjUgP3UnV0uAmj0mNDYkhOIIYKEZF+ZPCkW7XKNDxxUK3E\nIUO6OenW6NAkj4vurqeramnTEiqKq53RiBEBvglQzHXrPWIi7R+jJUQEZrrVTDyNHazR00w1Ghgf\niXCTAdXNFrRZ7UovxycWuwOVjWYYAGRqtOj2ONMtCALKy8ulE26Hw+H2ZwDIzs4O/AoJQGA7l7ia\nkJWAN3aU6/5mSumVAnYuISIAaR33xlQ1mWFzOBCmsxZxWlbGeEnAmYwGZCVG4VBtG8rr2pE7UHu/\nCysa2uEQgMzESESYtPnz6nHR3dbWhgULFkh/FgRB+rMgCDAYDNi5c2fgV0hunUsCXXSLN1P+VN4o\nfR/1iPESInIVYTJKswqqmy3ISGCBpxaljJfIIjs5Godq21BS16bJolsP14XHRfcHH3wg5zqoD66d\nSwbGRwT0Y2clRUm/eEpq2zBkgP6KUqvdgUMdg4XYuYSIROKAnKONZhbdKuEQBJRLN8vxexJIOcli\nrlubN1OWSbEj7V4XHhfdgwYNknMd1Ac5OpeIDAYDJmYn4tOCavxY1qjLolvsXJLNziVE5CIjIRK/\nVDShstGMCUovhgAA1c0WmG0OJMeEIy7S66HZ1Aex44dWB+ToYWCSNkMxIUbuPPJ4cTJluT5z3YEe\nKkRE+sCbKdWnVOrDrN3TTLXKSdL2Sbc0GEejN1ECLLo1oUiGdoGuxFz3j2UNsnx8pYmTKNm5hIhc\npbPoVh095HbVqrNXt0ZPuut40k1BILa7C/RNlCJxSM6BYy1oMetvSE5xtTw3oRKRtkm9ull0q0aZ\nxsd8q5l4Qlxe3w6HxmatCIIgndBr+VUQj4ruJ598Uvr/H3/8Ua61UA/k7Fwich2Ss0eHQ3IYLyGi\nnjBeoj5iblerY77VLDYyDANiw2G2OVDVZFF6OV6pb7Oi2WxHbIQJSRqe+OtR0b1+/Xrp/2+88UbZ\nFkPdVbdY0NBmQ7wMnUtc6XVIDjuXEFFvOJVSffSQ21UzMbajtVy3GInJSY7WdGtjj24NTk1Nxeuv\nv468vDzY7Xbs2LGjxzHwU6ZMCfgCQ52UR5ahc4krcUjO7nJ95boPs3MJEfUiLT4SBnBAjprooUOF\nmmUnR2F3eSNK69oxabDSq/GcXmJHHhXdt99+Ox599FGUlZXB4XBg2bJl3d6Hw3HkEaxJiuLNlLvL\n9DUkh5Moiag3ESYjBsRFoLrZwgE5KtBqsaO62YJwkwHpHRNDKbCkk+46bZ106yV25FHRfdJJJ+Gd\nd94BAMyYMQNffvmlrIuiTsGapKjXITmdnUv08fUQUWClx0eiutnCATkqUN4RechKjILJqI+DH7Xp\nHJCjrQ4mZTqJHXn9Wtobb7whxzqoF0VV8nYuEYlDcgDgRx3luuW+CZWItC2TN1OqRqkOWsKpXWfb\nQG2ddJfqJHbk9binwYMHo6CgAO+88w4qKiqQmZmJRYsWYfTo0XKsL6S5di4JRo/pCdkJ+LSgGrvL\nG7FgQobsny8YpHaBA1l0E1F37NWtHuLNfVrP7aqZeNKtuaJbHJoUaifdX331FS6//HJUVVVh2LBh\nqK6uxpVXXomvvvpKjvWFtOoWCxrb5e9cItLbkBzXziXDdBKXIaLAYttA9RCHn+RwMI5sBsZHItxk\nQE2LFa0Wu9LL8YjF7kBlgxlGA5Cp8aLb65PutWvXYuXKlZg7d670ti1btuDZZ5/F9OnTA7q4UBes\nziWisZnuQ3JiI72+PFSFnUuIqD/pHJCjGjzplp/RYEB2UhR+rWlDeX0bRg6MU3pJ/aqob4cAZxQs\nwqTtDkNer76kpASnn36629vmzJmDkpKSgC2KnIqC3HkjKtyEUelxuhmSw84lRNQfnnSrR2mtPjpU\nqJ3WxsHrJc8N+FB0p6SkoKioyO1txcXFSE5ODtiiyKk4SJ1LXLm2DtS6YukmVEZLiKhnHJCjDg6X\nMd9a71ChduL+amVATplO8tyAD/GShQsX4pZbbsHll1+O7OxslJWV4bXXXsOFF14ox/pCWrA6l7ia\nkJ2Af+lkSE4wb0IlIm0SB+Qc44AcRVU1WWCxC0iJCdd8tFHtNHfSLQ3G0f5Jt9dX9uLFi2E0GvHW\nW2+hsrISGRkZuPjii3HZZZfJsb6Q5dq5JJhFt56G5Ej7x84lRNQLDshRB+a5g2dwsrYG5JTV6Sd2\n5HXRbTQasXjxYixevFiO9VCHmhar1LkkLU7+ziWiQYlRSO34BXS4tg1DNdr1w2p34HBtGwwAhnMw\nDhH1ISPBOSCnkgNyFCP16GbnEtlJ8RKtnHTr6AkZX0dTKdebKIN52mwwGDAxS2wdqN1cd0lH55Ks\npChEh7NzCRH1LiOeHUyUJk0c1EFhpXZZyZ2ZbocgKLyavgmCoKtWkiy6Vaq4Ovh5btEEKWKi3Vx3\nUXVnu0Uior6IbQMrWHQrRsztDtZBhEDtYiPCMCA2HBa7gKomi9LL6VN9mxUtFjviIk1IjNZ+1p9F\nt0p1nnQHPxoxIVv7J91KdH4hIm3KYK9uxZXpqC2cFogxHrV3MHGNHWn5HjMRi26VOqjgSbc4JKeo\nyjkkR4uUfKWAiLSFo+CVJ3Wo0EFbOC0QYzwlKr+ZslRnsSOvim6r1YqZM2fCbOYDk5ycnUuUKxqj\nwk0YnaHtITmu0zyJiPrCk25ltVrsqGmxItxkwMCOfD3JK0fqYKLumyn11LkE8LLoDg8PR0JCAhwO\nh1zrIQD17Q40ttuQEBUW1M4lriZKERPt5bqtDoGdS4jIY51TKdVdgOhVeUfEISsxCiaj9iMEWiCe\nHKu9baAYf8kJxZNuALj88suxevVqWCzqDt9rWWmjM9IxPDVGsQzT+CztTqasbLbD5hCQnczOJUTU\nP3FATlWzBTYeKgWdlNvVyWmmFuRImW51P9HUWytJr28FfeWVV1BTU4P3338fKSkpMLpM79q4cWNA\nFxeqxKJbyTyyNCSnXHtDckobxCctjJYQUf9cB+RUNVmQmaiPUzWtEHO7ejnN1ALxpLtUIyfdesl0\ne110X3/99XKsg1yooeh2HZJzqKYNwzQU0yhttAJg5xIi8pw4IOdok5lFd5Cxc0nwDYyPRITJgJoW\nK1otdsREqO9VYYvdgcoGM4wG6OZn0uui+5xzzpFjHeRCPKlVsmgUh+R8UlCNH8sbNFZ0K/+khYi0\nJSM+Ej+jCZUNZiBb6dWEFjFXnMPOJUFjNBiQnRSNgzWtKKtrQ156nNJL6uZIfTsEAJkJkYgw6aPZ\nnk9fRXl5OV566SU8/PDDAICSkhIcPHgwoAsLVYIgoKyjaFS680bnkBxt5bpLG+0AWHQTkecyEjtu\npmxiB5NgK2OmWxHSzZQqzXV3xo70c114XXRv374dF154Ib7//nt8+OGHAIDq6mqsWbMm0GsLSdXN\nFjRbBcQr2LlEpMWi22p3oKLJBgOgqdN5IlJWOkfBK8IhCJ25XZ50B5X4JEetuW49xo68LrqfeOIJ\nPPjgg3jmmWdgMjkzQGPGjMH+/fsDvrhQJI4vz1Wwc4lIi0NyDte2wS4AWUnsXEJEnsvggBxFHGsy\nw2IXMCA2HLGR2h/zrSXikxy1nnTrMXbkddFdUlKCU089FQCkojAqKooDcwJEnESphv7SWhySI65z\nSIp+fkiJSH7pHJCjiDKdtYTTks4BOSo96dZh7MjrojstLQ0lJSVub/v111+Rnp4esEWJampq8Oc/\n/xmnnXYaZs6ciSuuuALff/99wD+PmhRVtQBQTx5ZK0NyDte24qa3fsY9HxYCAL46WI+b1/+Mw7Wt\nCq+MiLQgM8H5RJ0DcoKrVGct4bREOulW6VRKPV4bXhfdCxcuxB//+Ed8++23cDgc+OGHH3Dffffh\n3HPPDfjiHnroIVRWVmL9+vX47LPPcNppp+Hmm29GQ4O6C0B/dI4vV/6kGwAmaGBIzuHaVlz00i78\n70ANBJe3f1ZYg4te2sXCm4j6lRYfwQE5CuBJt3LEE+Sy+jY4BKGf9w4uQRCkwTghfSPlpZdeipkz\nZ+L2229HS0sLbrjhBowfPx4XXXRRwBdXWlqK0047DcnJyTCZTDjvvPPQ2tra7aRdLwRBcMt0q8HE\n7EQAnUNy1Gj1pwfRarHD7nBfn90hoNVix+pP2VmHiPoWbjIiNS4CDgGoauLE5WAp42AcxcREmDAg\nNhwWu4BjKuvaU9fq7B8eH2lCYpR+sv5efyVGoxHLli3DsmXLUFtbi/j4eISHh8uxNlx55ZV49913\ncfrppyMpKQlvvfUWsrOzMXLkSI/+vUNjpxVVTWY0tdsQG25ASkyYKtafHh+OtLgIVDVbcLC6BcMG\nqOPJgKihzYqtBdVw9PJ8wO4QsLWgGnUtZiRGy3Od6ol4zanh2tMi7p9/lN6/9PhIVDVbUNHQjvR4\nZbtH+ULp/fOFeJo5KDFS8XVrcf/8lZ0UjZoWK0pqWzEwAB3TArWHJR2vUGcnRUMQBNUe+ok8/Xp9\nevrgcDjw008/4ejRo0hPT8f48ePdxsEHyoQJE7BhwwbMnTsXJpMJCQkJWLVqFaKiPHtGXFRUFPA1\nyWn3UeczzZyEMBQXFyu8mk7DEw2oagY2f1+I2UPVVXSXN9l6LbhFDgHYtfcAsuL182xZblr72VEb\n7p9/lNq/WKPzhPuHgl8R06rdl7S1dP0dqm4GANjqKlBoPqbwapy0tH/+SjQ5r/md+w8hoT1wv9/9\n3cMdJc5XQBLDrCgsLAzEklTB6yqkrKwMt9xyC0pKSpCUlIT6+nrk5ORgzZo1yMnJCdjCHA4Hli1b\nhhNOOAGfffYZYmNj8eWXX+Kmm27CCy+8gFGjRvX7MXJzc2V5MiCX7fXlAOqQkximqrXPqC3Fd+W/\n4qgtBnl5eUovx016mxXGzb2fdAOA0QDkjxnJk24POBwOFBUVqer60xLun3+U3r/cQ0X4rvwIjHED\nkJenvbGUSu+ft1otdjSYKxFuMmDqhNEwKtwmV2v7FwjHVRzC5yUlsEUmIS9vqN8fL1B7+L9jJQAa\ncFxOGvLyhvu9LrmJX3d/vC66H3zwQUyYMAGvvfYaYmJi0NraitWrV+OBBx7Ac88959Nie9LY2Iiy\nsjI8+uijSEx05opPPfVUZGdn45tvvvGo6DYajZr6wSnuyHNnJ4Spau0Tc5IAAD+VN6lmTaLk2Eic\nMiIF24pqe/x7k9GAWXkDkBwbGeSVaZuarj8t4v75R6n9y0x0vop6tMmi6e+fVq6/Iw1ihCAKYSb1\nzFXQyv4FQk6KeDNle0C/Zn/3UOwdnpMSravvhddfyS+//ILbb78dMTHOlyFiYmJw6623Yt++fQFd\nWFJSEoYNG4a33noLzc3NcDgc+Pzzz1FcXIzjjjsuoJ9LLYqrne0CcxLUFYMYmxmHMKMBB461oFmF\nQ3J6OxwxGQ2IiTBhxRz1P0smIuVxKmVw6XHioNYMlnp1q6ttoDilVE+dSwAfiu6BAweisdG9fVxT\nUxPS0tICtijR3//+d9TX12PBggX4zW9+gyeeeAK33347pk6dGvDPpTRBEKR2gYNVVnRHhplwXEYc\nBAB7ytXVOvDT/VX434FaRJgMmDY8GcaOAtxoAGblDcC6JfkYkqKuHDoRqVNGInt1B5M4fpzj35Uj\ntmoUi1y1KNVpK0mPqruysjLp/y+99FLceuutuO666zBo0CAcOXIEL774IhYvXhzwxQ0ePBirV68O\n+MdVo6pmCxrbbUiICkNSlPpeSpmQnYA9R5rwY1kjTh6eovRyAAD1rVbct9F5g8Wtp43AZVOyUddi\nxq69B5A/ZiQjJUTklQyedAcVT7qVlxYfgQiTATUtVrRYbIiNUP7Qz2Jz4GijGUYDkJmor9/jHu3u\nggULpJHvYtuWm2++2e19fv75ZyxcuDCwqwshxR2TKEekxkh7rSYTsxPx+vZy7FbRSfdfNx9ATYsV\nJw5OxCWTswAAidHhyIoP402TROS1rgNywnSUJVUj8aR7MItuxRgNBmQnReNgTSvK69qRlx6n9JJw\npKEdAoBBiVEIN+nrZ9CjovuDDz6Qex0hr0hlkyi7mpDdOZnSIQiK32X+6f4qbPj5GKLDjbj/HOXv\neici7RMH5FQ1W1DVZJFurCR5lDFeogrZyVE4WNOKsnp1FN16jh15VHQPGjRI7nWEvKKOk+7ctFgA\nLcoupgeZCZEYGB+BY00WHKppxfDUWMXW4hor+cPs4RicwlMSIgqM9ATngJzKRjOLbhk5BEGKl2Rx\nGqWixJsVS+rUkeuW8tw6fAXEp/DOnj178Msvv6Clxb04XLJkSUAWFYqKXOIlsKqv6DYYDJiQlYCP\n91djd1mjokX3g5ucsZLJQxLxu45YCRFRIGQkROLnI03MdcvsWJMZVruAAbHhqsgRh7Lsjic9ZSop\nujs7l+jvyZjXV/ratWvx8ssvY+jQoYiO7nwWYjAYWHT7SBAEHOzo0T0iNQZ1FQovqBcTsp1F949l\njVg0MVORNXyyvwobf3HGSlbOY6yEiAIrI8F541Yli25Zlem0O4UWdXYwUUfXHvHayNHhteF10b1+\n/Xq89NJLGDdunBzrCUmunUtS4yJQp/SCejEh2zmkaHeZMjdT1rVasJKxEiKSkVR0N7HolpOU29Xh\naabW5KjspFvP14bXt4WaTCaMHTtWjrWELNc8txo7l4jEITlFVS1oag/+kJwHNxUxVkJEshIH5FQ2\nqOPUT6/E3K7ehp9oUZbLSbejo0OdUgSXrL8eM91eF92LFi3Cf/7zHznWErKKVd65ROQ2JOdIcE+7\nP95XhY9+YbcSIpJXhjQKnifdchJzu3o8zdSamAgTBsSGw2oXcEzh676u1YpWix3xkSYkRukv6+/1\nV3TZZZfhiiuuwJtvvonU1FS3v3v++ecDtrBQ4t65RN3EITm7yxoxLUhDcupaLbj/o45YyZzhPBkh\nItmIA3KY6ZaXnnO7WpSTHI2aFitK69qRkaDcE6HOaEm0ql/595XXRffdd98NQRAwY8YMtxspyXda\nKrqVGJLTGStJwu9OZKyEiOQjDchpssBqd+huOIda8KRbXXKSo/FjWSPK6toweUiSYuvQe+zI66J7\n+/bt+PDDD5GcnCzHekKOIAid0yhVHi8Bgj8kxz1WMoqxEiKSleuAnOpmDsiRQ4vFhpoWKyJMBgyM\n19eYb60SB9GIRa9SpCdjOhyMA/iQ6R44cCCiovS5GUqoaragyWx3di6JjVB6Of0Sh+Q0tttwqKZV\n1s/lGitZMWeEbp/5EpG6sG2gvFzbBfIgRR3EmxbFolcpZTo/6fa66F6+fDkefvhhVFVVweFwuP1H\n3tNK5xKROCQHkL914IMfHZBiJRefyKmoRBQc6R1FNwfkyKNMxy3htKqzbaBKTrp1em14HS/505/+\nBADYsGFDt7/buXOn/ysKMZ1Ft/qjJaKJ2YmyD8nZsq8KH+2tYqyEiIKOJ93yKtVxSzit6hyQo+xJ\nd6nOhyZ5XXSzQ0lgdbYLVP9NlCLXXLccalssuH8jYyVEpAwOyJGXdNKt09yuFqXFRyAyzIiaFita\nzDbERga/XZ/F5sDRRjNMBiAzUZ9Zf693ddKkSXKsI2RpqXOJaEyXITnxAe6l+eCmA6htZayEiJQh\ntkzjgBx5iMNPeKCiHkaDAVlJUThY3Yqy+naMSo8L+hrK69shAMhMjNJt1yCfupf0ZsqUKX4tJtRo\nrXOJKDLMhDGZcfipvAl7jgS2X/fmvcewqSNW8gBjJUSkACnTzZNuWfCkW51ykjuK7ro2RYpuvee5\nAR+K7uXLl3d7m3gDIDPd3jnW5Oxckhitjc4lriZkJ+Kn8ib8GMAhObUtFjzw0QEAwK2njWDej4gU\nwUy3fOwOfY/51jIxRy1m7oNN73luwIei+/vvv3f7c1VVFZ588knMnj07YIsKFcXVHafcqdroXOJq\nYlYC/onA5rrFWMmUoUm4aBJjJUSkjLQ4DsiRy7EmM6x2AQNiwxETYVJ6OeQiW+pgoszNlKFw0u33\nI0laWhpuv/12PP7444FYT0jRYucSkXgz5U/lziE5/nKNldw/j7ESIlJOuMmItPgICHDOUqDAYZ5b\nvaSTboXaBpbWOovuHB2fdAfk6bsgCKiurg7EhwopRR2dS7R0E6UoMzEK6R1Dcn6t9m9IDmMlRKQ2\n6fHs1S0H5rnVa7A4IEexk+6OJ2Qp+q0BvI6XvPfee25/bm9vx6ZNmzB+/PhArSlkdN5Eqb2iG3Dm\nurfsq8Lu8ka/voYHPmKshIjUJT0hEnuONDHXHWBSbpeHK6qT1RHrKG9oh90hwGQM3ivOgiCgNASe\nkHlddL/44otuf46JicGYMWNwww03BGxRoUCrnUtcTchOwJZ9VfixrBHn+jgkZ/PeY9i8j7ESIlKX\nDE6llEUo5Ha1KjrchNS4CFQ3W3CsyYzMxOB9j2pbrWizOpAQFYbE6PCgfd5g87ro/vDDD+VYR8jR\ncucS0URpSE6DT/++psWC+ztiJbcxVkJEKiIW3RWN7NUdSOJp5mA+3qtSdlIUqpstKKtvD2rRHSqx\nI96SrRDXoTha61wiGpMRj3CTAcVVrWhqt3n97x/46ADqWq2YOjQJFzJWQkQqIg7I4Ul3YJWFQFs4\nLctRKNcdKrEjj0+677333j7/3mAw4J577vF3PSGjs12gNqMlABARZsSYjHjsLm/ET+WNmD7C837d\nm/cewxYxVsIhOESkMuns1R1wLWYbalutiDAZkBavzVd49S6nI/ZTEvSimyfdbmw2W6//ffHFF/jg\ngw/kXKfuaLlziasJUsTE837dXWMlWTzxICKVyeBUyoCThuIkRfOgRaXEVyDKgtw2MBQ6lwBenHQ/\n8MAD3d5WUFCAxx57DA6HA7fddltAF6Z3Wu9cIpqQ5Sy6fyz3PNfNWAkRqR0H5ASelNvlTZSqJQ3I\nqQ/uSbd4beTo/KTb6xspAaCurg5PPfUUNm7ciIULF2LVqlVITEwM9Np0SxAEt0y3lklDcsqcQ3L6\nO73Y9IszVhITYWKshIhUSxyQc6zJgqpmCwYF8aYyvQqV3K6WdWa6lTnp1vu14dVTd5vNhn/+859Y\nsGABysvL8frrr+OOO+5gwe2lY00WNHd0LhkQq+3WOOKQnCazvd8hOTUtFjywSYyVDGeshIhUTRyQ\nw1x3YJR2nJ7m8KRbtVLjIhAZZkRtqxUtZu8bJPjCbLPjaKMZJkNnrEuvPC66v/jiC1x44YV4++23\ncf/992Pt2rUYMWKEnGvTLT10LnE1Idv5pGt3ee+5bkEQcP/GQtS1WnHSsCRcmM9YCRGpG3t1BxY7\nl6if0WBAVpIYMQnOafeRejMEOA/x9B7j8jhecssttyA5ORnnnHMO9u7di71793Z7n+XLlwd0cXql\nl2iJyJMhOZv2VuHj/dXOWMm80bp4skFE+tbZwYS9ugNByu3ypFvVcpKjcbC6FaV1bRiVHif75yuV\nrgv9PxnzuOjOz8+HwWDAL7/8Iud6QkJxRwxDy+0CXfU3JKe62YIHPioEAPzfaSMwSOc3ShCRPmR2\n9OpmvMR/doeA8gbnkxdGC9VNfFIUrFx3aQhNKfW46H7hhRfkXEdI0UvnElHXITnxUZ2XlSAIuP+j\nQtS32XDSsCRckO/buHgiomBLZ7wkYI41mWG1CxgQG46YCJPSy6E+iPGf0iB1MAml2JG+wzMqpKfO\nJSJxSI4A4Kcuue6PfjmGTxgrISINyuCAnIAJpQiB1mUH+aQ7lGJHLLqD7GiTGc1mO5J00LnEVU9D\ncqqbLXiwo1sJYyVEpDXpHJATMNLwExbdqpeTFNxR8KHSLhBg0R10xR2TKEfopHOJSMx1i0NyXGMl\nJw9LZqyEiDQnLS4CRkPngBzyXaiM+daDrI4T5/KGdtgdgqyfSxCEkLo2WHQHmd6iJSLppLu0AcXV\nLXj7hwp8sr8asREmrJw3SldPMIgoNISbjEiNi4AAoKrZovRy+tXQZkV5kw0NbVall9JNGQfjaEZ0\nuAlpcRGw2gXZX+WpabGizepAQlQYEqP18+p/b3yaSBkM559/PioqKqQ/C4KA9vZ2/O1vf8Ps2bMV\nXJl/Om+i1EfnEpHZ5kBkmAHNFgfmP7tDevvV03IYKyEizcpIiMSxJgsqG82qnUp5uLYVqz45iM8K\nq+EQAOPmaswelYoVc4ZjSIo6fteUcTCOpmQnR6Gq2YKyujZZr/tQuy5UW3T/5z//cfvzv//9b7zw\nwguYPn26QisKDLFdoJ5Oug/XtuKil3bBYuv+MtSr35bht2MHquaBn4jIG86plE2q7WAiPv62WuwQ\nkwAOAfissAbfHarHuiX5qnj8DaUOFXqQkxSNH0obUVbfjikyfp5Quy40Ey9Zv349FixYgMhI7Y4I\nde1cMiJVP0X36k8PotViR0/Jr1aLHas/PRj0NRERBUJGotirW50DcsTH367ZW7tDUM3jb4vZhtpW\nKyLDjEiLj1B6OeQBsYNJqcw3U0p5bp50q8f27dtRUlKC888/36t/53Co68aXysbOziXJ0aYe1ye+\nTW1r701DmxVbC6rR270WdoeArQXVqGsxByWvpbX9Uxvun3+4f/5R4/6lxzmLxMoGs6rWBajv8bc3\nJbXOV3izkqIAQYBDkPfmPF+p8fpTSlZiZ9HtzX54u4di0Z2VGKXpffd07ZooutevX49p06YhKyvL\nq39XVFQk04p880Ol8+XJQbEGHDhwoM/3Vdvae1PeZOv1AV/kEIBdew8gKz54l5tW9k+tuH/+4f75\nR03752hxFgUHjlSjsNCu8GrcqfXxt6vt5c5XCZLD7SgsLFRsHZ5S0/WnFKHjxuGiinqfvmee7mHh\nkVrn/7RUo7CwyevPozWqL7qrqqqwbds2rFq1yut/m5ubC6NRPQmab+vKANTh+MGpyMsb2eP7OBwO\nFBUVqW7tvUlvs8K4ufeTFgAwGoD8MSODdtKtpf1TG+6ff7h//lHj/rXGNADf7karEIG8vDyll+NG\nbY+/vfmmtgxAPUZlDUBeXq5i6+iPGq8/pSRnmoHPvkN1O7y67r3dw5pN3wIATh6Xq+lct/h190f1\nRffbb7+N9PR0n26gNBqNqvrBOSjeRDkwtt91qW3tvUmOjcTsUan4rLCmx36eJqMBs/IGIDk2uFl8\nreyfWnH//MP984+a9i8j0VkIVDaaVbMmUX+Pv0YDMHtUatAff7sqa+gYjJMSrbo97Imarj+lDEyI\nQmSYEXWtVrRaHYiL9K5c9GQPzTY7jjVZYDIAg5K0cW34S9Vfoc1mw7vvvovzzjtPF9+Moir9dS4B\ngBVzhiMmwgST0b0Xt8loQEyECSvmDFdoZURE/hEH5FQ3q3NAjvj42xMBwPUzhwZ1PT0JtQ4VemAw\nGKRhNXKNgy/vmEQ5KCkKYTqo8Tyh6q9y27ZtaGhowIIFC5Reit8EQUBxtT4H4wxJicG6JfmYlTcA\nYt1tNACz8gaopl0VEZEv3AbkNKlvQM6QlBj8ea57ZMNoAOIiTRAE4D8/VPTyL4NHvFluMAfjaIo4\nyEjspR1oofhkTNXxkjlz5mDOnDlKLyMgjjZ1di5JidHf1KUhKTF4/ILj0dBmRW2LFSmx4SExXYqI\n9E8akNNkVuWwrx/LGgEAi6dkYXKKGfljRqKyyYKLX9qFN3aU4/TRqZgyNFmRtdkdgnSimRUibeH0\nQhxYI9dJd2l9aLULBFR+0q0nrtESPY9ET4wOx7DUGBbcRKQbzgE5QGWD+np12x0CPtlfBQCYPy4d\nWfHOcdrHZcRj6YwhAIC/fFCAFotNkfUdbTLD5hCQGheB6PCeYzCkTjkdJ90lMvXqLg3Bk24W3UEi\nDcXRWbSEiEjvxAE5R5vUN5VyZ0k9alqsGJwSjVHp7r9frp0xGKPT41BW346/KzQkp0wcfqLCVwio\nb1KmW7Z4SWiNgAdYdAfNQanoZr6ZiEhLMsSTbhWOgt+813nKfeZxad1eRQ03GfHg/NEIMxrw751H\n8N2huqCvr6wjWpLDPLfmSJlumeIl4scNpWuDRXeQ6LVzCRGR3mUkqLPotjkcUrTkjDFpPb7P6Iw4\nKWZytwIxk9JannRrVVbH96y8vr3HlpT+EARBOkFnppsCSs+dS4iI9C5dpUX3zsMNUrRkdHpcr++n\nZMyklCfdmhUdbkJaXARsDiHg0aqaFivarA4kRIUhISp07gFj0R0EYueS5JhwDIiNUHo5RETkBfGk\n+6jKiu4t+3qPlrhSMmYiZbpD6DRTT7KlDiaBzXWLp9yhlOcGWHQHhRgtGZHKPDcRkdakxXcOyLGo\nZECOzeHAx/v6jpa4Gp0Rh6WnBL+bCTPd2iZ+30oDnOsWY0ehdl2w6A4Cdi4hItKuMKMRaR0DcqpV\nMiBn5+EG1LZaMaSfaImra6cPxnEZcSivb8fqIMRMms021LVaERnmHDBE2pOTJN5MGdiTbjF2FErt\nAgEW3UFRXMU8NxGRlkm5bpW0DRSjJXP7iZa4co2ZvLnzCL79Vd6YididIispCkYdz6fQMzFeIhbJ\ngRKqsSMW3UFQLHUuYbyEiEiLMhKcxYEaBuS4Rkvmjhno1b8dlR6HZR0xk7s/lDdmUloXmhECPels\nGxjoTHdoxo5YdMvMtXMJ4yVERNoknnSrYUCOa7Sk60AcT1zjEjNZ9Yl8MZNQvVlOT3KkATkynXSH\nWCtJFt0yq2xk5xIiIq1TU6/uzXuPAQDmjvE8WuLKNWay7nv5YiahOOZbb1LjIhAVZkRdqxXN5sC8\nKtJuteNokwVhRgMyEiMD8jG1gkW3zIqkPDejJUREWqWWqZTOgTjVAIC5x3kXLXEVjJhJKA4/0RuD\nwdCZ6w5QxKS849Q8MzESYcbQKkND66tVQHG1M889PJXREiIirRJP5JQuuv2Nlri6ZvpgjJExZiKN\n+eZJt6ZlJwV2HHyo5rkBFt2yY+cSIiLtS49Xx4Acf6MlruSMmdgdgnSimcWTbk2TBuTUB+akO1Tz\n3ACLbtkxXkJEpH1qGJATqGiJq7z0OCyfKQ7N2Y+WAOV2jzaaYXMISIuLQHS4KSAfk5QR6AE5Uo9u\nnnRTIAmC4NIukCfdRERapYYBOWK0ZGgAoiWulkxzxkyONJixKkBDc0qZ59aN7CSedAcKi24ZVTaa\n0WJxdi5JYecSIiJNE9sGVjQq06tbjJacEYBoiSs5YibMc+tHdqBPukO4fzuLbhkxWkJEpB/igBwl\nct02hwMfd0RLzvRyII4nAh0zCdWJg3oknkgfqW+H3SH49bEEQeh8QsaimwJJjJZwKA4RkfalK9ir\ne+fhBtR1REvyBsrzOyWQMRMpt8uTbs2LCjdhYHwEbA7B7yec1S0WtNscSIwOQ3xUWIBWqB0sumUk\nTaJku0AiIs3LUHAq5Sapa8nAgEZLXAUyZsKTbn0RnzyV+pnrLgvxgUksumXEeAkRkX5IA3Iaglt0\nu3UtGZMm6+fKS4/D9TOHAvAvZiLmdgeHYIRAj6S2gX7musukPHdoPhlj0S0Tdi4hItIXaUBOkE+6\ndxyqlz1a4mrJ9ByMzXTGTP72SbHX/76p3Yb6Nhsiw4xIjWMTAT3IkQbk+HfSHeqxIxbdMhE7l6Sw\ncwkRkS6kKzQKfvO+KgDyRktchRmdMZNwkwFv7arANwdrvfr30vj3pKigrJfklxOgUfBS55IUnnRT\nAInRkhGMlhAR6YI4IKcmiANyghktcTVyoEvM5MMCNHsRM5Fyu4yW6IbUNrDe33gJT7pJBuxcQkSk\nL64DcqqCFDERoyXDBgQnWuLq6mnOmEmFlzET8aQ7VHO7etSZ6fbzRsoQvzZYdMuk8yZKFt1ERHoh\n9uoOVsREjJaccVxwoiWuXGMm63dV4GsPYyalIX6aqUepsRGICjOivs2Gpnbfbq5tt9pxrMmCMKNB\nar8Zalh0y6SzXSDjJUREehHMXt2u0ZIzgxgtceUaM7nbw5hJaYh3qNAjg8HQedrtY9vA8o5oSmZi\nJMKMoVl+huZXLTN2LiEi0iepV3cQim7XaMnIIEdLXDljJvEex0zK6pnp1qNsqYOJb7lu8boIxUmU\nIhbdMqhg5xIiIl0K5kn3pr3B7VrSmzCjEX/1MGZidwg40lFcZSXxpFtPclI6bqb0Mdfd+QoIi24K\noGKpcwlPuYmI9CQzSCfdzmhJR9F9nDLREle5A2NxgzQ0p/eYydFGM2wOAWlxEYgONwVxhSS3nCQx\nXuLbSbdYdGeH8JMxFt0y6Oxcwjw3EZGeSCfdMncv2X6oHvVtNsWjJa6u6oiZVDaa8djHPcdMxDHh\nHP+uP1LbQB9PutlKkkW3LNi5hIhInzKCFC/ZrJJoiSvXmMl/fqjAV8XdYyZShICdS3Qn28+Tbqld\nIE+6KZBYdBMR6VNqnPwDctQWLXHlGjO5+8OCbu3jxNPMUM7t6pWY0T9S3w67Q/Dq3wqCwJNusOgO\nOEEQUFwtdi5hvISISE/CjEYMjI+UdUCOGC0ZPiBGNdESV1dNy8HxgzpiJl26mYjDUxgv0Z+ocBMG\nxkfA5hBQ2ejdaXd1swXtNgcSo8MQHxUm0wrVj0V3gFU0mtHa0bkkOYadS4iI9CY9Xt6IiRgtOWNM\nmmqiJa5ch+a83SVmUsp2gbqWI+W6vSu6S9kuEACL7oBj5xIiIn2TM9dttXdGS5QaiOOJ3LRY3PCb\noQDcYyZldczt6llnrtu7myl5XTix6A6wX440AQAG86U1IiJdSpexbeCOw53RErXfF3TVyTkY5xIz\nKa9vR32bDZEmA1Lj+EqvHomvYHg7IId5bidVF927d+/GddddhxkzZmDmzJm48sor4XDIc+OKvw7X\ntuKmt37Gk9sOAQDe+bESN6//GYdrW5VdGBERBZScA3I6B+KoM1riKsxoxAPzRyPMCLz9QwXmPvkt\nAMBsF3DLf37h7z8dknp1e9k2kK0knVSbZt+9ezduvPFG3H777Xj88ccRHh6Offv2qfJB6HBtKy56\naRdaLXbpbQKAzwpr8N2heqxbko8hKbypkohID+QakGO1O/Dp/s6iWwvCTQaYjEbYHA649rPg7z99\nknp1e9k2UDrpDvFWkqo96X788cexcOFCzJs3D9HR0QgLC8O4ceNUWXSv/vQgWi32bi107A4BrRY7\nVn96UKGVERFRoIkn3RUBLrpdu5aoPVoiWv3pQdh6aB/H33/6lOPjgJzOEfA86VadtrY2/PTTTxg/\nfjwWL16MsrIyZGZmYsmSJZgzZ47HHycYUZSGNiu2FlSjt5aVdoeArQXVqGsxIzE6vN+PJ65ZrTEa\nteP++Yf75x/un3+0sn8DO/LKRxvNAV3r5r3HAABnHJcKQRAgCN71Qg72/gX695/StHL9KSk52oTo\ncCMa2myob7UgoUv7v572sM1qR1WzBWFGAwbGRehyfz39mlRZdDc2NsLhcODDDz/E448/jlGjRmHb\ntm3405/+hBdeeAETJkzw6OMUFRXJvFKgvMnW6wOOyCEAu/YeQFa859sdjLXrGffPP9w//3D//KP2\n/bM7BBgB1LRY8Mv+AoQb/X8F1uYQsKWj6B4V04LCwkKfP1aw9k+u339KU/v1p7S0aCNKrA58vbsA\nw5N7fjLluoeljc7ONqkxRhQXHQjKGtVKlT8FMTHO/Nc555yDsWPHAgDmzJmDE088Ef/73/88Lrpz\nc3NhNMqboElvs8K4ufdn+gBgNAD5Y0Z6fNJdVFQUlLXrEffPP9w//3D//KOl/UuLr8PRJguSMoZI\nk/r88fXBWjRZjmJ4agzmnDjGpyhlsPcv0L//lKal609Jw3+0oqSxBqbEgcjLc7/3oKc9rDhQA6Aa\nwwcmIC8vT4EVy0/8uvujyqI7Pj4e2dnZfue3jUaj7D84ybGRmD0qFZ8V1vQ4FtVkNGBW3gAkx0Z6\n9XGDsXY94/75h/vnH+6ff7SwfxkJUTjaZMGxZgtyAnCj4Jb9NQCcY99NJpNfHytY+yfX7z+laeH6\nU1JOijPXXV5v7nWfXPewvMF570NOcnTI76tqv/qLL74YH3zwAQoKCuBwOLBt2zbs2rULs2fPVnpp\n3ayYMxwxESaYurzEaDIaEBNhwoo5wxVaGRERySGQA3LcB+IM9PvjBRN//4UeqW2ghx1MxJsos0N8\nMA6g0pNuALjkkkvQ3t6OW265BU1NTRg8eDAefvhhjBs3TumldTMkJQbrluRj9acHpZtKjAZgVt4A\nrJgznO2SiIh0JpC9urcfqkdDmw3DU2OQO1AbXUtE/P0XerztYCKOjA/1EfCAiotuALj66qtx9dVX\nK70MjwxJicHjFxyPhjYralusSIkN10SGjYiIvJcRwF7dYtcSNY997wt//4UWccCNp0W3OEgn1Afj\nACovurUoMZoPNkREeheoeInV7sAnBdUAgLnHaSta0hV//4UG8cbhigYzbA4HwvrIaQuCIMVQQn0w\nDqDiTDcREZFaBaro/k7D0RIKTZFhJqTHR8DmEPp9pae62QKzzYGk6DDER/Gcl0U3ERGRlzoz3d6N\nw+5qi8ajJRSapHHwdX1f/+K4+GzmuQGw6CYiIvJaWlwkTAagpsUKi923CXt6ipZQaMmWOpj0nesW\n89w57FwCgEU3ERGR10xGA9Linafdx3yMmIjRkhGMlpDGSB1Mavs56RaLbp50A2DRTURE5BOpg0mT\nb0W3GC2Zy2gJaYxYRPd/0s14iSsW3URERD5Ij/f9ZkpGS0jLOtsG9pfpZrtAVyy6iYiIfJCR6HvR\nzWgJaZnY/s/Tk+4ctgsEwKKbiIjIJ+JJty8DcjoH4vCUm7RnQGw4osONaGizobHd2uP7tFntqGq2\nIMxokLr9hDoW3URERD7wtVe31e7AJ/ud0ZIzmOcmDTIYDJ2n3b1ETMo73j4oKQomoyFoa1MzFt1E\nREQ+8LXo/vbXOjS2d0RL0hgtIW3K6WccvJjnzmGeW8Kim4iIyAe+DsjZsq8KAKMlpG3ZUgeTnq9/\nqXMJ89wSFt1EREQ+8GVADqMlpBdiR5KyXk66y3jS3Q2LbiIiIh/4MiBHjJbkpjFaQtqWk9T3SXcp\nT7q7YdFNRETkI28H5IjREvbmJq3L7ifTLZ6As0d3JxbdREREPhLbBlY09F90M1pCepKVFAUDnNe+\nzeEer3IIgnQCzhHwnVh0ExER+UgckOPJSTejJaQnkWEmpCdEwuYQUNnlSWd1swVmmwPJMeGIiwxT\naIXqw6KbiIjIR96Mgt+8tyNawq4lpBPZSR03U3bJdYt/Fv+enFh0ExER+UjKdPdTdFvsDnxa4IyW\nzD2O0RLSB7FtYNdct9QukNESNyy6iYiIfJThYa/u71yiJSMYLSGdkE6667qedHe0C+RJtxsW3URE\nRD7KSHAWFf3FSxgtIT3KkQbkdDnprudJd09YdBMREfkoNS6ic0COrecBOYyWkF71Ngpe7NHNwTju\nWHQTERH5yG1ATi8dTMRoyci0WEZLSFc6M91d4iXMdPeIRTcREZEfOnPdPRfdYrSEvblJb1JiwhEd\nbkRjuw0NbVYAgNkmoLrFgjCjQeruQ04suomIiPzQV9HNaAnpmcFgkHLd5R057qMtNgDO4Tkmo0Gx\ntakRi24iIiI/pPdRdDNaQnondjARc91HW+zOtzPP3Q2LbiIiIj9Ivbp7yHRvYrSEdC5b6mAinnR3\nFN1JzHN3xaKbiIjID9JUygb3m8ksdge2MlpCOpfTZUDO0WZn0T2YN1F2w6KbiIjID5mJzpfRu550\nM1pCoUBsCyh2LGG8pHcsuomIiPwgnXR3yXRvkgbi8JSb9EuMkYgDco4229zeTp1YdBMREfmhpwE5\nbtESFt2kY4OSImEAcKS+HVa7A8d40t0rFt1ERER+6GlAzrcHndGSvIGxGJ7KaAnpV2SYCekJkbAL\nwM9HmmBxAMkx4YiLDFN6aarDopuIiMhPXXt1b97X0bWEN1BSCBDbBn7za53bn8kdi24iIiI/uRbd\njJZQqBE7mHzzaz0ARkt6w6KbiIjIT64DchgtoVAjFtl7yhudf+ZJd48YuCEiIvKT64Ccg9UtABgt\nodAhdiqxC84/57BzSY9YdBMREflJbBtYWteG3WXO0z5GSyhU5HSJkzBe0jMW3URERH4SB+R8XVwL\nuwBGSyikZHeZPpkYxfKyJ6rdlbVr1+LFF19EZGSk9LaZM2fioYceUnBVRERE7g7XtuLpbb8C6Hx5\n3e4QcLi2FUNSYhRcGVFwNLfbYDQAjo7r/4KXdmH2qFSsmDOcPwMuVFt0A8D48ePx8ssvK70MIiKi\nHh2ubcVFL+1Cq8Xu9vZDNc63r1uSz6KDdO1wbSsuenmXVHADzuL7s8IafHeonj8DLti9hIiIyEer\nPz2IVosddteKA84T71aLHas/PajQyoiCQ/wZ6MruEPgz0IWqT7r379+P2bNnIyoqChMnTsQNN9yA\nrKwsj/+9w+GQcXXyENesxbWrAffPP9w//3D//KO1/Wtos2JrQTW61NsSu0PA1oJq1LWYkRgdLvt6\ntLZ/asP9857afgaU4uk1Y2hubu5lq5RVVFSEmJgYZGZmoqqqCo8//jj27NmDN998EzExfb9M4XA4\nUFhYGKSVEhFRKCpvsuGmTdX9vt8TZ6YiK17VZ1xEPuHPgLu8vDwYjb2HSFS7A7m5udL/Dxw4EPfc\ncw9mzpyJ3bt34+STT/b4Y/T1xauRw+FAUVGRJteuBtw//3D//MP984/W9i+9zQrj5t5P+QDAaADy\nx4wM2km3lvZPbbh/3lPbz4BSxGunP6otursyGAwwGAwQBM8P5o1Go2Z/cLS8djXg/vmH++cf7p9/\ntLJ/ybGRmD0qFZ8V1nTLdAOAyWjArLwBSI6N7OFfy0cr+6dW3D/PqfVnQK1Ue1Vt2bIFdXV1AICa\nmhqsXLkSKSkpmDBhgsIrIyIicloxZzhiIkwwGQ1ubzcZDYiJMGHFnOEKrYwoOPgz4DnVFt0bN27E\neeedh2nTpuGSSy6BzWbDs88+i9hYDhsgIiJ1GJISg3VL8jErbwDEmsNoAGblDWCrNAoJ/BnwnGrj\nJWvWrFF6CURERP0akhKDxy84Hg1tVtS2WJESG67r/CpRV+LPQF2LGbv2HkD+mJGMlPRAtUU3ERGR\nliRGs9im0JYYHY6s+DD+HPRCtfESIiIiIiK9YNFNRERERCQzFt1ERERERDJj0U1EREREJDMW3URE\nREREMmPRTUREREQkMxbdREREREQyY9FNRERERCQzFt1ERERERDLT5URKQRAAAA6HQ+GVeE9csxbX\nrgbcP/9w//zD/fMP988/3D//cP/8F6p7KH69Yv3ZG0Nzc3Pf76FBNpsNRUVFSi+DiIiIiEJEbm4u\nwsJ6P8/WZdHtcDjgcDhgMBhgMBiUXg4RERER6ZQgCBAEAUajEUZj78ltXcZL+vuiiYiIiIiCiZUp\nEREREZHMWHQTEREREcmMRTcRERERkcxYdBMRERERyYxFNxERERGRzFh0ExERERHJjEU3EREREZHM\nWHQTEREREclMl8NxguGJJ57Al19+iYqKCkRHR2PSpEm4+eabkZGRIb1PRUUFHnroIezatQsRERE4\n44wzcOuttyI8PFx6n3Xr1uG1115DXV0dhg4diltvvRWTJk0CABw+fBjPPPMMdu/ejebmZqSmpmLR\nokW4/PLL+5y0mZ+fj8jISLcBQa+++ipGjhwpw074Lhh7CABnn302ampqYDKZpLc99NBDmDlzZq9r\n27lzJ1avXo1Dhw4hJSUFV1xxBS644IIA74B/grF/u3btwo033uj2ea1WK6KiovD555/3uK4jR45g\n3rx5iIqKcrtON23ahPj4+EBugV8CsX/fffcdXn75ZRQWFqKhoQHvvfceBg8e7PZ5PPkedBUq119/\n+6fnx8BgXX98/PN9//j41/f+vf7669i4cSPKysoQHh6OsWPH4uabb8aIESOkj9HY2IhHHnkEX3zx\nBQDglFNOwR//+Mc+96KwsBCPPPII9u3bh7i4OJx77rlYunSpLiaM86TbRwaDAffeey+2bt2Kt99+\nGwaDAbfccov09w6HAzfffDMSExOxadMmvP7669i1axfWrFkjvc/HH3+Mp59+GitXrsS2bduwYMEC\n3HTTTaisrATgvFhPOOEE/OMf/8AXX3yBhx9+GG+88QbeeOONfte3Zs0afPXVV9J/avplIwrGHoru\nuOMOt/3o6xfOkSNHcNNNN2HBggXYtm0b7rvvPjz55JPYunVroLfAL8HYv/z8fLd9++qrr5Cbm4uz\nzjqr3/W9+eabbv9OTb9wgMDsX3R0NObNm4eVK1f2+Dk8+RhdhdL119/+6fkxMBj7J+Ljn2/7x8e/\nvvfPbDbjtttuw5YtW7BhwwYMGzYMy5cvR3t7u/Q+d911F2pqavD+++/j/fffR01NDe6+++5e19XS\n0oLf//73mDhxIrZu3Yqnn34a7733Hv71r3/JsQ1Bx6LbRzfeeCPGjBmD8PBwxMfH44orrkBhYSEa\nGxsBAD/88AMOHTqEFStWIC4uDoMGDcL111+Pd999F2azGQCwfv16zJ8/H5MmTUJ4eDguuugiDB48\nGB988AEAYNy4cbj44ouRnp4Og8GA0aNH47TTTsPOnTsV+7oDKRh76IsPPvgAQ4YMwUUXXYTw8HBM\nmjQJ8+fPx7p16wLydQeKEvv3008/Yf/+/bjwwguD9nXKJRD7N378eJxzzjluJzuuPPkYXYXS9dff\n/un5MTAY++cLXn+94+Of+/4tWbIE+fn5iIqKQlRUFK655hpUV1fj0KFDAJxP4L788kusWLECycnJ\nSE5OxooVK7Bt2zZUVFT0uK6tW7fCbrdj+fLliIqKwsiRI3H55ZfjrbfeCsq+yI1Fd4B88803yMzM\nREJCAgCgoKAAWVlZSE5Olt5n7NixaG9vx+HDh6X3Of74490+zpgxY7B///4eP4fNZsPOnTsxatSo\nftdz1113YdasWbjkkkvwzjvv+PplBZWce/jUU0/h1FNPxQUXXIBXX30VVqu113UUFhZi7Nixbm8b\nO3YsCgoK/Pr65BaMa3D9+vU48cQTMXz48H7Xc+2112L27Nm48sorVXdK1hNf9q8/vnyMULr+vKXn\nx0A594+Pf07+Xn98/Ot7/7755htER0djyJAhAJzXUkREBPLy8qT3ycvLQ3h4OAoLC3v8GAUFBRg1\nahTCwjrTz2PHjkVZWRmam5v9/jqVxkx3AHz33Xd4/vnn8dhjj0lva2lp6fZykvjnlpaWXt8nISEB\n5eXl3T6HIAj461//CpvNhsWLF/e5nmeffRYTJkyAyWTCd999hzvvvBN2u111mTxXcu7hypUrMXr0\naERGRmLPnj2466670NDQgJtvvrnHtTQ3N3fLRSYkJEifU42CcQ3W19fjk08+6fel7KSkJLzyyisY\nM2YM7HY7PvnkE/zpT3/CqlWrMGPGDJ++Prn5un/98eVjhNL15w09PwbKuX98/Ovkz/XHx7++96+w\nsBB//etfcdtttyE6OhqA81qKi4vr9r7x8fG9FtD9fd6ePp6W8KTbT59//jn+7//+Dw888ACmT58u\nvT02NhZNTU1u7yv+OTY2ttf3aWxslP5eZLfbce+99+Lnn3/Gc8891+3vu5o6dSqioqIQHh6OGTNm\n4He/+x02bNjg89coN7n3cNKkSYiNjUVYWBhOOOEELF26tM/9iIuL8+j7ohbBuAYB4L333kN8fDxm\nzZrV53piYmIwYcIEhIeHIyoqCvPmzcOZZ56JjRs3+vT1yc2f/euPLx8jlK4/T+n5MVDu/ePjXydf\nrz+Aj39A7/v3888/Y9myZVi2bBkWLVokvT0uLq7H4rqpqanX4jnQ3ze1YdHth40bN+Kuu+7Cww8/\njNmzZ7v93ahRo1BeXo76+nrpbXv37kVUVJT00suoUaPwyy+/uP27ffv2YfTo0dKfLRYLbr/9dhw8\neBAvvPACUlNTvV6n0WiEIAhe/7tgCMYeduXa0aAneXl52Lt3r9vb9u7d69FL2sEWrP1zOBx45513\nsGjRIreX/TxlMBhUeQ36u3/98eVjhNL15wk9PwYGY/+64uOf9/vHxz+nnvbvu+++w/XXX49bbrkF\nF198sdvHyMvLg8VicYuSFBYWwmq1ukVOun7egoIC2Gw2t8+bnZ2t+VNugEW3z95880088sgjWLNm\nDaZNm9bt70844QQMHToUf//739HS0oKKigo8++yzWLhwISIjIwEAF1xwAd5//33s2rULVqsV69ev\nx+HDh3HOOecAAFpbW3HjjTeioaEBa9euRWJiYr/r2rdvH/bu3Qur1QqbzYZvvvkGb7zxBs4888zA\nbkAABGMPS0pKsGvXLpjNZjgcDvz000947rnnMHfu3F7Xdc455+DQoUNYv349rFYrdu3ahffff191\nN88EY/9EX3/9NSorK3Heeef1u65du3bh4MGDsNvtsFqt2LRpEzZt2qS6azAQ++dwOGA2m2GxWAA4\nM8dmsxl2u93jj9FVKF1//e2fnh8Dg7F/fPzzb/9EfPzref+2bt2K2267DXfffTfmz5/f7WMMGjQI\nM2bMwJo1a1BXV4e6ujqsWbMGM2fORGZmZo/rmj17NkwmE9auXYv29nYUFRXhn//8p+quP18Zmpub\n1ff0SwPy8/MRFhbWrdfuk08+ifz8fADOO3cffvhhfP/994iIiMDcuXOxYsUKRERESO//5ptvSj2S\nhw0b5tYj+YMPPsA999zTrd9sZmYm/vOf/wBwPlN98MEH8dVXXwEAtm3bhscffxxHjx6FyWRCZmYm\nLrjgApx//vmy7ocvgrGHP//8M+6//36Ul5fDYDAgLS0NZ599Ni6//HLp87700kv46KOPpD0FnH1q\nV61a5danVm0/9MHYP9HNN9+M8PBw/O1vf+u2jq779+677+KVV15BdXU1IiIiMHjwYCxevBinn356\noLfAL4HYv507d+K6667r9rHvvfde6ZdQfx8jlK+//vZPz4+Bwdg/Pv75//ML8PGvt/2bN28eKisr\nux0g3HnnnVJbxYaGBjzyyCP48ssvAXTv09315xdwnoY//PDD2L9/P2JjY3Heeefppk83i24iIiIi\nIpkxXkJEREREJDMW3UREREREMmPRTUREREQkMxbdREREREQyY9FNRERERCQzFt1ERERERDJj0U1E\nREREJDMW3UREREREMmPRTUSkQ4Ig4KabbsLNN9/c7e9uvfVW3HDDDRAEzkYjIgoWFt1ERDpkMBhw\n3333Yd++fXjzzTelt//nP//Bnj17cP/99wd0rLLVag3YxyIi0iOOgSci0rHt27fjlltuwT/+8Q+Y\nTCYsXrwYq1atgs1mw/PPP4/Dhw8jKSkJF198MX73u98BAMxmM/7yl79g9+7daGlpQVpaGi6++GJc\ndNFF0sc9++yzMW/ePPz888/YvXs3lixZgquuukqpL5OISPXClF4AERHJZ8qUKbj00kvx5z//GWFh\nYbj44othMplw++2347HHHsPkyZNx8OBB3HjjjUhMTMRZZ50FQRAwffp0/OUvf0FsbCy++uor3Hbb\nbcjJycG0adOkj/3OO+/gb3/7G8aPH4/29nYFv0oiIvVjvISISOeWLl2KiIgIAMDy5cvxr3/9Cxdc\ncAGmTp0Ko9GI3NxcnHfeefjvf/8LAIiKisKCBQsQHx8Po9GIU045BdOmTcO3337r9nHnz5+PCRMm\nwGAwIDo6OuhfFxGRlvCkm4hI58LCwpCbmwubzYawsDCUlJRg+/btWL9+vfQ+DocDGRkZAACLxYKn\nn34a27ZtQ21tLQCgvb0dZ5xxhtvHHTRoUPC+CCIijWPRTUQUYlJTU3HmmWfiuuuu6/HvX3/9dXz+\n+edYs2YNBg8eDKPRiD/84Q/dup0YjXyxlIjIU3zEJCIKMb/73e/w5ptv4rvvvoPNZoPNZkNRURG+\n//57AEBzczPCw8ORnJwMh8OBjz/+uFu0hIiIvMOTbiKiEDNr1ixERERg7dq1+PXXXwEAgwcPxhVX\nXAEAWLx4MYqKinD22WcjMjISs2fPxqmnnqrgiomItI8tA4mIiIiIZMZ4CRERERGRzFh0ExERERHJ\njEU3EREREZHMWHQTEREREcmMRTcRERERkcxYdBMRERERyYxFNxERERGRzFh0ExERERHJjEU3ERER\nEZHMWHQTEREREcmMRTcRERERkcz+H2Fqkq6XicMXAAAAAElFTkSuQmCC\n" } } ], "source": [ "plt.figure(figsize=(9,5))\n", "data['Year'] = data['Year'].astype(int) \n", "yearly_trend = data.groupby('Year').size()\n", "yearly_trend.plot(kind='line', marker='o')\n", "plt.gca().set_facecolor('#f4f4f4') \n", "plt.gcf().patch.set_facecolor('#f4f4f4')\n", "plt.title('Trend of Fellows Over Time')\n", "plt.xlabel('Year')\n", "plt.ylabel('Number of Fellows')\n", "plt.show()" ], "id": "32e4f250" }, { "cell_type": "markdown", "metadata": {}, "source": [ "This is just a simple example of collecting data through webscraping.\n", "This `BeautifulSoup` has endless potentials to use in many projects to\n", "collect the data that are not publicly available in cleaned or organized\n", "form. Thank you for reading.\n", "\n", "## References\n", "\n", "- Fisher,R. A..\n", " (1988). Iris. UCI Machine Learning Repository.\n", "\n", "**Share on**\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "" ], "id": "bbb5a863-a2b5-4dad-abd4-24de2865642f" }, { "cell_type": "raw", "metadata": { "raw_mimetype": "text/html" }, "source": [ "" ], "id": "3341da5d-2a88-4cf3-a392-5c2f51d6faee" }, { "cell_type": "markdown", "metadata": {}, "source": [], "id": "f8bb1228-72f9-4414-8e31-aa1b6477deb7" }, { "cell_type": "raw", "metadata": { "raw_mimetype": "text/html" }, "source": [ "" ], "id": "3f4144a3-37db-4276-a72a-66cbc0888791" }, { "cell_type": "markdown", "metadata": {}, "source": [ "**You may also like**" ], "id": "78f713b0-481d-426b-8528-d6f143001edd" } ], "nbformat": 4, "nbformat_minor": 5, "metadata": { "kernelspec": { "name": "python3", "display_name": "Python 3 (ipykernel)", "language": "python", "path": "/opt/hostedtoolcache/Python/3.10.16/x64/share/jupyter/kernels/python3" }, "language_info": { "name": "python", "codemirror_mode": { "name": "ipython", "version": "3" }, "file_extension": ".py", "mimetype": "text/x-python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.16" } } }