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Multiple Linear Regression
The multiple linear regression takes the form


with  constants or parameters of the model. In vector notation, ,
$$
\vec{\beta}=\begin{pmatrix}\beta_0\\ \beta_1\\ \vdots \\ \beta_d \end{pmatrix};\hspace{4mm}\vec{x}=\begin{pmatrix}1\\ x_1\\ x_2\\ \vdots\\ x_d\end{pmatrix}
$$
For  data points, in matrix algebra notation, we can write  where  and  with
$$
X=\begin{pmatrix}1&x_{11}&x_{12}&\cdots&x_{1d}\\1&x_{21}&x_{22}&\cdots&x_{2d}\\ \vdots& \vdots &\vdots&\ddots &\vdots\\1&x_{n1}&x_{n2}&\cdots&x_{nd} \end{pmatrix};\hspace{4mm} y=\begin{pmatrix}y_1\\y_2\\ \vdots\\ y_n\end{pmatrix};\hspace{4mm} \xi=\begin{pmatrix}\xi_1\\ \xi_2\\ \vdots\\ \xi_n\end{pmatrix}
$$
We fit the  data points with the objective to minimize the loss function, mean squared error

Ordinary Least Square Method
The scikit-learn library uses Ordinary Least Squares (OLS) method to find the parameters. This method is good for a simple and relatively smaller dataset. Here is a short note on this method. However, when the dimension is very high and the dataset is bigger, scikit-learn uses another method called Stochastic Gradient Descent for optimization which is discussed in the next section.
The goal of OLS is to find the parameter vector  that minimizes the sum of squared errors (SSE) between the observed target values  and the predicted values :

This can be expressed in matrix form as:

To minimize the SSE, let’s first expand the expression:

Since  is a scalar (a 1x1 matrix), it is equal to its transpose. That is

and therefore,

To find the minimum of the SSE, we take the derivative with respect to  and set it to zero:

Now, solve for :

To isolate , we multiply both sides by  (assuming  is invertible):

The vector  gives the estimated coefficients that minimize the sum of squared errors between the observed target values  and the predicted values . This method is exact and works well when  is invertible and the dataset size is manageable.   This method is very efficient for small to medium-sized datasets but can become computationally expensive for very large datasets due to the inversion of the matrix .
Iterative Method
Gradient Descent
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 Gradient Descent is an optimization algorithm used to minimize the cost function. The cost function  measures how well a model with parameters  fits the data. The goal is to find the values of  that minimize this cost function. In terms of the iterative method, we want to find  and  such that .   For a small change in , we can approximate  using Taylor series expansion


The update rule for vanilla gradient descent is given by:

Where:
·  is the current estimate of the parameters at iteration .
·  is the learning rate, a small positive scalar that controls the step size.
·  is the gradient of the cost function  with respect to  at the current point .
The update rule comes from the idea of moving the parameter vector  in the direction that decreases the cost function the most.
1. Gradient: The gradient  represents the direction and magnitude of the steepest ascent of the function  at the point . Since we want to minimize the function, we move in the opposite direction of the gradient.
1. Step Size: The term  scales the gradient by the learning rate , determining how far we move in that direction. If  is too large, the algorithm may overshoot the minimum; if it’s too small, the convergence will be slow.
1. Iterative Update: Starting from an initial guess , we repeatedly apply the update rule until the algorithm converges, meaning that the changes in  become negligible, and  is close to the optimal value .
Stochastic Gradient Descent (SGD)
Stochastic Gradient Descent is a variation of the vanilla gradient descent. Instead of computing the gradient using the entire dataset, SGD updates the parameters using only a single data point or a small batch of data points at each iteration. The later one we call it mini batch SGD.
Suppose our cost function is defined as the average over a dataset of size :

Where  represents the contribution of the -th data point to the total cost function. The gradient of the cost function with respect to  is:

Vanilla gradient descent would update the parameters as:

Instead of using the entire dataset to compute the gradient, SGD approximates the gradient by using only a single data point (or a small batch). The update rule for SGD is:

Where:
·  is the index of a randomly selected data point at iteration .
·  is the gradient of the cost function with respect to the parameter , evaluated only at the data point indexed by .
Python Execution
Synthetic Data
import numpy as np
from sklearn.linear_model import LinearRegression
X=np.random.randn(1000,2)
y=3*X[:,0]+2*X[:,1]+1+np.random.randn(1000)
So for this project, our known relationship is .
Fit the data: Using scikit-learn Library
mlr=LinearRegression()
mlr.fit(X,y)
coefficients=mlr.coef_.tolist()
slope=mlr.intercept_.tolist()
So the model parameters: slope  0.9776 and coefficients  3.0198, and  2.0666
Fit the data: Using Custom Library OLS
First we create our custom NewLinearRegression using the OLS formula above and save this python class as mlreg.py
import numpy as np


class NewLinearRegression:
    def __init__(self) -> None:
        self.beta = None

    def fit(self, X, y):
        X = np.concatenate([np.ones((len(X), 1)), X], axis=1)
        X_transpose_X = np.dot(X.transpose(), X)
        X_transpose_X_inverse = np.linalg.inv(X_transpose_X)
        X_transpose_y = np.dot(X.transpose(), y)
        self.beta = np.dot(X_transpose_X_inverse, X_transpose_y)

    def predict(self, X):
        X = np.concatenate([np.ones((len(X), 1)), X], axis=1)
        return np.dot(X, self.beta)

    def coeff_(self):
        return self.beta[1:].tolist()

    def interceptt_(self):
        return self.beta[0].tolist()
Now it’s time to use the new class
from mlreg import NewLinearRegression
mlr1 = NewLinearRegression()
mlr1.fit(X,y)
coefficients1=mlr1.coeff_()
slope1=mlr1.interceptt_()
So the model parameters: slope  0.9776 and coefficients  3.0198, and  2.0666
Fit the data: Using Gradient Descent
We create the class
class GDLinearRegression:
    def __init__(self, learning_rate=0.01, number_of_iteration=1000) -> None:
        self.learning_rate = learning_rate
        self.number_of_iteration = number_of_iteration
        self.weights = None
        self.bias = None

    def fit(self, X, y):
        num_of_samples, num_of_features = X.shape
        self.weights = np.zeros(num_of_features)
        self.bias = 0

        for _ in range(self.number_of_iteration):
            y_predicted = np.dot(X, self.weights) + self.bias

            d_weights = (1 / num_of_samples) * np.dot(X.T, (y_predicted - y))
            d_bias = (1 / num_of_samples) * np.sum(y_predicted - y)

            self.weights -= self.learning_rate * d_weights
            self.bias -= self.learning_rate * d_bias

    def predict(self, X):
        y_predicted = np.dot(X, self.weights) + self.bias
        return y_predicted

    def coefff_(self):
        return self.weights.tolist()

    def intercepttt_(self):
        return self.bias
Now we use this similarly as before,
from mlreg import GDLinearRegression
mlr2= GDLinearRegression(learning_rate=0.008)
mlr2.fit(X,y)
coefficients2=mlr2.coefff_()
slope2=mlr2.intercepttt_()
So the model parameters: slope  0.9771 and coefficients  3.0184, and  2.066
Fit the data: Using Stochastic Gradient Descent
First we define the class
class SGDLinearRegression:
    def __init__(self, learning_rate=0.01, num_iterations=1000, batch_size=1) -> None:
        self.learning_rate = learning_rate
        self.num_iterations = num_iterations
        self.batch_size = batch_size
        self.theta = None
        self.mse_list = None  # Initialize mse_list as an instance attribute

    def _loss_function(self, X, y, beta):
        num_samples = len(y)
        y_predicted = X.dot(beta)
        mse = (1/num_samples) * np.sum(np.square(y_predicted - y))
        return mse

    def _gradient_function(self, X, y, beta):
        num_samples = len(y)
        y_predicted = X.dot(beta)
        grad = (1/num_samples) * X.T.dot(y_predicted - y)
        return grad

    def fit(self, X, y):
        # Adding the intercept term (bias) as a column of ones
        X = np.concatenate([np.ones((len(X), 1)), X], axis=1)
        num_features = X.shape[1]
        self.theta = np.zeros((num_features, 1))

        self.mse_list = np.zeros(self.num_iterations)  # Initialize mse_list

        for i in range(self.num_iterations):
            # Randomly select a batch of data points
            indices = np.random.choice(
                len(y), size=self.batch_size, replace=False)
            X_i = X[indices]
            y_i = y[indices].reshape(-1, 1)

            # Compute the gradient and update the weights
            gradient = self._gradient_function(X_i, y_i, self.theta)
            self.theta = self.theta - self.learning_rate * gradient

            # Calculate loss for the entire dataset (optional)
            self.mse_list[i] = self._loss_function(X, y, self.theta)

        return self.theta, self.mse_list

    def predict(self, X):
        # Adding the intercept term (bias) as a column of ones
        X = np.concatenate([np.ones((len(X), 1)), X], axis=1)
        return X.dot(self.theta)

    def coef_(self):
        # Return the coefficients (excluding the intercept term)
        return self.theta[1:].flatten().tolist()

    def intercept_(self):
        # Return the intercept term
        return self.theta[0].item()

    def mse_losses(self):
        # Return the mse_list
        return self.mse_list.tolist()
Now
import matplotlib.pyplot as plt
from mlreg import SGDLinearRegression
mlr3=SGDLinearRegression(learning_rate=0.01, num_iterations=1000, batch_size=10)
theta, _ = mlr3.fit(X, y)
So the model parameters: slope  array([0.98750421]) and coefficients  array([3.01288453]), and  array([2.05965667])
Up next knn regression
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