Multiple Liear Regression
Rafiq Islam
2024-08-29
Table of contents

Multiple Linear Regression
The multiple linear regression takes the form

with constants or parameters of the model. In vector notation, ,
$$
\vec{\beta}=\begin{pmatrix}\beta_0\\ \beta_1\\ \vdots \\ \beta_d \end{pmatrix};\hspace{4mm}\vec{x}=\begin{pmatrix}1\\ x_1\\ x_2\\ \vdots\\ x_d\end{pmatrix}
$$
For data points, in matrix algebra notation, we can write where and with
$$
X=\begin{pmatrix}1&x_{11}&x_{12}&\cdots&x_{1d}\\1&x_{21}&x_{22}&\cdots&x_{2d}\\ \vdots& \vdots &\vdots&\ddots &\vdots\\1&x_{n1}&x_{n2}&\cdots&x_{nd} \end{pmatrix};\hspace{4mm} y=\begin{pmatrix}y_1\\y_2\\ \vdots\\ y_n\end{pmatrix};\hspace{4mm} \xi=\begin{pmatrix}\xi_1\\ \xi_2\\ \vdots\\ \xi_n\end{pmatrix}
$$
We fit the data points with the objective to minimize the loss function, mean squared error

Ordinary Least Square Method
The scikit-learn library uses Ordinary Least Squares (OLS) method to find the parameters. This method is good for a simple and relatively smaller dataset. Here is a short note on this method. However, when the dimension is very high and the dataset is bigger, scikit-learn uses another method called Stochastic Gradient Descent for optimization which is discussed in the next section.
The goal of OLS is to find the parameter vector that minimizes the sum of squared errors (SSE) between the observed target values and the predicted values :

This can be expressed in matrix form as:

To minimize the SSE, let’s first expand the expression:

Since is a scalar (a 1x1 matrix), it is equal to its transpose. That is

and therefore,

To find the minimum of the SSE, we take the derivative with respect to and set it to zero:

Now, solve for :

To isolate , we multiply both sides by (assuming is invertible):

The vector gives the estimated coefficients that minimize the sum of squared errors between the observed target values and the predicted values . This method is exact and works well when is invertible and the dataset size is manageable. This method is very efficient for small to medium-sized datasets but can become computationally expensive for very large datasets due to the inversion of the matrix .
Iterative Method
Gradient Descent
 GIF Credit: gbhat.com
 Gradient Descent is an optimization algorithm used to minimize the cost function. The cost function measures how well a model with parameters fits the data. The goal is to find the values of that minimize this cost function. In terms of the iterative method, we want to find and such that . For a small change in , we can approximate using Taylor series expansion

The update rule for vanilla gradient descent is given by:

Where:
· is the current estimate of the parameters at iteration .
· is the learning rate, a small positive scalar that controls the step size.
· is the gradient of the cost function with respect to at the current point .
The update rule comes from the idea of moving the parameter vector in the direction that decreases the cost function the most.
1. Gradient: The gradient represents the direction and magnitude of the steepest ascent of the function at the point . Since we want to minimize the function, we move in the opposite direction of the gradient.
1. Step Size: The term scales the gradient by the learning rate , determining how far we move in that direction. If is too large, the algorithm may overshoot the minimum; if it’s too small, the convergence will be slow.
1. Iterative Update: Starting from an initial guess , we repeatedly apply the update rule until the algorithm converges, meaning that the changes in become negligible, and is close to the optimal value .
Stochastic Gradient Descent (SGD)
Stochastic Gradient Descent is a variation of the vanilla gradient descent. Instead of computing the gradient using the entire dataset, SGD updates the parameters using only a single data point or a small batch of data points at each iteration. The later one we call it mini batch SGD.
Suppose our cost function is defined as the average over a dataset of size :

Where represents the contribution of the -th data point to the total cost function. The gradient of the cost function with respect to is:

Vanilla gradient descent would update the parameters as:

Instead of using the entire dataset to compute the gradient, SGD approximates the gradient by using only a single data point (or a small batch). The update rule for SGD is:

Where:
· is the index of a randomly selected data point at iteration .
· is the gradient of the cost function with respect to the parameter , evaluated only at the data point indexed by .
Python Execution
Synthetic Data
import numpy as np
from sklearn.linear_model import LinearRegression
X=np.random.randn(1000,2)
y=3*X[:,0]+2*X[:,1]+1+np.random.randn(1000)
So for this project, our known relationship is .
Fit the data: Using scikit-learn Library
mlr=LinearRegression()
mlr.fit(X,y)
coefficients=mlr.coef_.tolist()
slope=mlr.intercept_.tolist()
So the model parameters: slope 0.9776 and coefficients 3.0198, and 2.0666
Fit the data: Using Custom Library OLS
First we create our custom NewLinearRegression using the OLS formula above and save this python class as mlreg.py
import numpy as np

class NewLinearRegression:
 def __init__(self) -> None:
 self.beta = None

 def fit(self, X, y):
 X = np.concatenate([np.ones((len(X), 1)), X], axis=1)
 X_transpose_X = np.dot(X.transpose(), X)
 X_transpose_X_inverse = np.linalg.inv(X_transpose_X)
 X_transpose_y = np.dot(X.transpose(), y)
 self.beta = np.dot(X_transpose_X_inverse, X_transpose_y)

 def predict(self, X):
 X = np.concatenate([np.ones((len(X), 1)), X], axis=1)
 return np.dot(X, self.beta)

 def coeff_(self):
 return self.beta[1:].tolist()

 def interceptt_(self):
 return self.beta[0].tolist()
Now it’s time to use the new class
from mlreg import NewLinearRegression
mlr1 = NewLinearRegression()
mlr1.fit(X,y)
coefficients1=mlr1.coeff_()
slope1=mlr1.interceptt_()
So the model parameters: slope 0.9776 and coefficients 3.0198, and 2.0666
Fit the data: Using Gradient Descent
We create the class
class GDLinearRegression:
 def __init__(self, learning_rate=0.01, number_of_iteration=1000) -> None:
 self.learning_rate = learning_rate
 self.number_of_iteration = number_of_iteration
 self.weights = None
 self.bias = None

 def fit(self, X, y):
 num_of_samples, num_of_features = X.shape
 self.weights = np.zeros(num_of_features)
 self.bias = 0

 for _ in range(self.number_of_iteration):
 y_predicted = np.dot(X, self.weights) + self.bias

 d_weights = (1 / num_of_samples) * np.dot(X.T, (y_predicted - y))
 d_bias = (1 / num_of_samples) * np.sum(y_predicted - y)

 self.weights -= self.learning_rate * d_weights
 self.bias -= self.learning_rate * d_bias

 def predict(self, X):
 y_predicted = np.dot(X, self.weights) + self.bias
 return y_predicted

 def coefff_(self):
 return self.weights.tolist()

 def intercepttt_(self):
 return self.bias
Now we use this similarly as before,
from mlreg import GDLinearRegression
mlr2= GDLinearRegression(learning_rate=0.008)
mlr2.fit(X,y)
coefficients2=mlr2.coefff_()
slope2=mlr2.intercepttt_()
So the model parameters: slope 0.9771 and coefficients 3.0184, and 2.066
Fit the data: Using Stochastic Gradient Descent
First we define the class
class SGDLinearRegression:
 def __init__(self, learning_rate=0.01, num_iterations=1000, batch_size=1) -> None:
 self.learning_rate = learning_rate
 self.num_iterations = num_iterations
 self.batch_size = batch_size
 self.theta = None
 self.mse_list = None # Initialize mse_list as an instance attribute

 def _loss_function(self, X, y, beta):
 num_samples = len(y)
 y_predicted = X.dot(beta)
 mse = (1/num_samples) * np.sum(np.square(y_predicted - y))
 return mse

 def _gradient_function(self, X, y, beta):
 num_samples = len(y)
 y_predicted = X.dot(beta)
 grad = (1/num_samples) * X.T.dot(y_predicted - y)
 return grad

 def fit(self, X, y):
 # Adding the intercept term (bias) as a column of ones
 X = np.concatenate([np.ones((len(X), 1)), X], axis=1)
 num_features = X.shape[1]
 self.theta = np.zeros((num_features, 1))

 self.mse_list = np.zeros(self.num_iterations) # Initialize mse_list

 for i in range(self.num_iterations):
 # Randomly select a batch of data points
 indices = np.random.choice(
 len(y), size=self.batch_size, replace=False)
 X_i = X[indices]
 y_i = y[indices].reshape(-1, 1)

 # Compute the gradient and update the weights
 gradient = self._gradient_function(X_i, y_i, self.theta)
 self.theta = self.theta - self.learning_rate * gradient

 # Calculate loss for the entire dataset (optional)
 self.mse_list[i] = self._loss_function(X, y, self.theta)

 return self.theta, self.mse_list

 def predict(self, X):
 # Adding the intercept term (bias) as a column of ones
 X = np.concatenate([np.ones((len(X), 1)), X], axis=1)
 return X.dot(self.theta)

 def coef_(self):
 # Return the coefficients (excluding the intercept term)
 return self.theta[1:].flatten().tolist()

 def intercept_(self):
 # Return the intercept term
 return self.theta[0].item()

 def mse_losses(self):
 # Return the mse_list
 return self.mse_list.tolist()
Now
import matplotlib.pyplot as plt
from mlreg import SGDLinearRegression
mlr3=SGDLinearRegression(learning_rate=0.01, num_iterations=1000, batch_size=10)
theta, _ = mlr3.fit(X, y)
So the model parameters: slope array([0.98750421]) and coefficients array([3.01288453]), and array([2.05965667])
Up next knn regression

Share on

You may also like
