
Classification: Linear Discriminant Analysis
(LDA)

Rafiq Islam

2024-10-17

Table of contents

Introduction . 1
Mathematical Foundation of LDA . 2
Dimensionality Reduction . 4

Dataset . 4
1. Compute Class Means µk for each class: . 4
2. Compute Overall Mean µ: . 5
3. Compute the Within-Class Scatter Matrix SW : 5
4. Compute the Between-Class Scatter Matrix SB: 7
5. Solve the Eigenvalue Problem: . 9
Step 6: Visualizing the Results . 12
Summary of the Process of Eigenvalue Problem 13
Final Summary . 14

Python Code Example . 14
Conclusion . 20

Disclaimer . 20
References . 20

Introduction

Linear Discriminant Analysis (LDA) is a supervised machine learning algorithm commonly used
for classification tasks. It is widely applied when dealing with datasets where the number of
predictors (features) exceeds the number of observations, or when multicollinearity is a concern.
LDA works by projecting data onto a lower-dimensional space, maximizing the separation
between classes.

1

Mathematical Foundation of LDA

Let’s assume we have a dataset X ∈ Rn×p consisting of n data points and p features, and
each data point belongs to one of K distinct classes. The goal of LDA is to find a new space
(called a discriminant space) in which the classes are maximally separated, i.e. we want to
maximize the separability between classes while minimizing the variation within
each class. This can be mathematically expressed as finding a projection that maximizes the
ratio of between-class variance to within-class variance.

For each class Ck (where k ∈ {1, 2, . . . , K}):

• µk is the mean vector of class Ck.

• µ is the overall mean of the entire dataset.

Class Mean: For each class Ck, the mean is calculated as:

µk = 1
Nk

∑
xi∈Ck

xi

where Nk is the number of data points in class Ck, and xi represents individual data points.

Overall Mean: The mean of the entire dataset is:

µ = 1
n

n∑
i=1

xi

To understand how well classes are separated, we need two key measures:

1. Within-Class Scatter Matrix SW

The within-class scatter matrix measures how the data points of each class deviate from
the class mean. It captures the spread of data points within each class. For class
Ck, the scatter matrix is calculated as:

SW =
K∑

k=1

∑
xi∈Ck

(xi − µk)(xi − µk)T

This formula is saying that for each class Ck, we calculate the distance of every point xi

from the mean of its class µk, and then sum these squared distances across all classes.

2

2. Between-Class Scatter Matrix SB

The between-class scatter matrix measures how the class means deviate from the
overall mean. It captures how well-separated the classes are.

SB =
K∑

k=1
Nk(µk − µ)(µk − µ)T

In this case, for each class Ck, we calculate the distance between the mean of class µk

and the overall mean µ, then scale this by the number of points in class Ck.

LDA aims to find a transformation that maximizes the separation between classes. This is done
by finding a linear projection w such that the between-class scatter is maximized and the
within-class scatter is minimized. Mathematically, the optimization problem becomes:

J(w) = wT SBw
wT SW w

• SBw captures the between-class variance (how well-separated the classes are in the new
projection).

• SW w captures the within-class variance (how tightly packed the points of the same class
are in the new projection).

This ratio J(w) is known as the Fisher’s discriminant ratio. The goal is to find w that
maximizes this ratio. To maximize the Fisher’s discriminant ratio, we need to solve the following
generalized eigenvalue problem:

S−1
W SBw = λw

Here, w is the vector that defines the linear combination of features that maximizes class
separation, and λ is an eigenvalue that represents how much variance is explained by that
direction.

The solution to this equation gives us the eigenvectors (directions) and eigenvalues (variances) of
the transformed space. We select the top eigenvectors corresponding to the largest eigenvalues
to form the projection matrix W .

3

Dimensionality Reduction

The LDA transformation reduces the dimensionality of the data by projecting it onto a subspace
spanned by the eigenvectors with the largest eigenvalues. For a dataset with K classes, LDA
can reduce the data to at most K − 1 dimensions because SB has rank K − 1. If we have two
classes, LDA will reduce the data to a one-dimensional subspace. For three classes, LDA can
project the data onto a two-dimensional subspace, and so on.

Now before diving into the python code, let’s do some math by hand so that we can understand
the skeleton of the process. Let’s create a small dataset with 6 features and 4 observations
divided into 3 classes. We will use this dataset to manually go through the Linear Discriminant
Analysis (LDA) process step by step.

Dataset

Observation Feature 1 Feature 2 Feature 3 Feature 4 Feature 5 Feature 6 Class
x1 2 3 4 5 6 7 C1
x2 3 4 5 6 7 8 C1
x3 6 5 4 3 2 1 C2
x4 7 6 5 4 3 2 C3

Now, we’ll walk through the mathematical steps of LDA for this small dataset.

1. Compute Class Means µk for each class:

• Class C1 (mean of x1 and x2):

µ1 = 1
2

2
3
4
5
6
7

+

3
4
5
6
7
8

=

2.5
3.5
4.5
5.5
6.5
7.5

4

• Class C2 (only one observation x3):

µ2 =

6
5
4
3
2
1

• Class C3 (only one observation x4):

µ3 =

7
6
5
4
3
2

2. Compute Overall Mean µ:

We compute the overall mean µ, which is the average of all observations from all classes:

µ = 1
4

2
3
4
5
6
7

+

3
4
5
6
7
8

+

6
5
4
3
2
1

+

7
6
5
4
3
2

= 1

4

18
18
18
18
18
18

=

4.5
4.5
4.5
4.5
4.5
4.5

3. Compute the Within-Class Scatter Matrix SW :

For each class Ck, the within-class scatter matrix SW is computed as:

SW =
K∑

k=1

∑
xi∈Ck

(xi − µk)(xi − µk)T

For C1, the within-class scatter matrix is:

5

(x1 − µ1) =

2
3
4
5
6
7

−

2.5
3.5
4.5
5.5
6.5
7.5

=

−0.5
−0.5
−0.5
−0.5
−0.5
−0.5

; (x2 − µ1) =

3
4
5
6
7
8

−

2.5
3.5
4.5
5.5
6.5
7.5

=

0.5
0.5
0.5
0.5
0.5
0.5

For class C1, the scatter matrix is:

SW 1 = (x1 − µ1)(x1 − µ1)T + (x2 − µ1)(x2 − µ1)T

=

−0.5
−0.5
−0.5
−0.5
−0.5
−0.5

[
−0.5 −0.5 −0.5 −0.5 −0.5 −0.5

]
+

0.5
0.5
0.5
0.5
0.5
0.5

[
0.5 0.5 0.5 0.5 0.5 0.5

]

=

0.5 0.5 0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5 0.5 0.5

For classes C2 and C3, there is only one data point in each, so there is no within-class scatter:

SW 2 = 0, SW 3 = 0

Thus, the total within-class scatter matrix is:

SW = SW 1 + SW 2 + SW 3 = SW 1

SW =

0.5 0.5 0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5 0.5 0.5

6

4. Compute the Between-Class Scatter Matrix SB:

For each class Ck, the between-class scatter matrix is computed as:

SB =
K∑

k=1
Nk(µk − µ)(µk − µ)T

For class C1 (where N1 = 2):

(µ1 − µ) =

2.5
3.5
4.5
5.5
6.5
7.5

−

4.5
4.5
4.5
4.5
4.5
4.5

=

−2
−1
0
1
2
3

Thus, for C1:

SB1 = 2

−2
−1
0
1
2
3

[
−2 −1 0 1 2 3

]
= 2

4 2 0 −2 −4 −6
2 1 0 −1 −2 −3
0 0 0 0 0 0

−2 −1 0 1 2 3
−4 −2 0 2 4 6
−6 −3 0 3 6 9

=

8 4 0 −4 −8 −12
4 2 0 −2 −4 −6
0 0 0 0 0 0

−4 −2 0 2 4 6
−8 −4 0 4 8 12
−12 −6 0 6 12 18

For C2 (where N2 = 1):

(µ2 − µ) =

6
5
4
3
2
1

−

4.5
4.5
4.5
4.5
4.5
4.5

=

1.5
0.5

−0.5
−1.5
−2.5
−3.5

7

The between-class scatter matrix for C2 is:

SB2 =

1.5
0.5

−0.5
−1.5
−2.5
−3.5

[
1.5 0.5 −0.5 −1.5 −2.5 −3.5

]

=

2.25 0.75 −0.75 −2.25 −3.75 −5.25
0.75 0.25 −0.25 −0.75 −1.25 −1.75

−0.75 −0.25 0.25 0.75 1.25 1.75
−2.25 −0.75 0.75 2.25 3.75 5.25
−3.75 −1.25 1.25 3.75 6.25 8.75
−5.25 −1.75 1.75 5.25 8.75 12.25

For C3 (where N3 = 1):

(µ3 − µ) =

7
6
5
4
3
2

−

4.5
4.5
4.5
4.5
4.5
4.5

=

2.5
1.5
0.5

−0.5
−1.5
−2.5

The between-class scatter matrix for C3 is:

SB3 =

2.5
1.5
0.5

−0.5
−1.5
−2.5

[
2.5 1.5 0.5 −0.5 −1.5 −2.5

]

=

6.25 3.75 1.25 −1.25 −3.75 −6.25
3.75 2.25 0.75 −0.75 −2.25 −3.75
1.25 0.75 0.25 −0.25 −0.75 −1.25

−1.25 −0.75 −0.25 0.25 0.75 1.25
−3.75 −2.25 −0.75 0.75 2.25 3.75
−6.25 −3.75 −1.25 1.25 3.75 6.25

Total Between-Class Scatter Matrix SB:

8

SB = SB1 + SB2 + SB3

=

8 4 0 −4 −8 −12
4 2 0 −2 −4 −6
0 0 0 0 0 0

−4 −2 0 2 4 6
−8 −4 0 4 8 12
−12 −6 0 6 12 18

+

2.25 0.75 −0.75 −2.25 −3.75 −5.25
0.75 0.25 −0.25 −0.75 −1.25 −1.75

−0.75 −0.25 0.25 0.75 1.25 1.75
−2.25 −0.75 0.75 2.25 3.75 5.25
−3.75 −1.25 1.25 3.75 6.25 8.75
−5.25 −1.75 1.75 5.25 8.75 12.25

+

6.25 3.75 1.25 −1.25 −3.75 −6.25
3.75 2.25 0.75 −0.75 −2.25 −3.75
1.25 0.75 0.25 −0.25 −0.75 −1.25

−1.25 −0.75 −0.25 0.25 0.75 1.25
−3.75 −2.25 −0.75 0.75 2.25 3.75
−6.25 −3.75 −1.25 1.25 3.75 6.25

Adding the matrices gives:

SB =

16.5 8.5 0.5 −7.5 −15.5 −23.5
8.5 4.5 0.5 −3.5 −7.5 −11.5
0.5 0.5 0.5 0.5 0.5 0.5

−7.5 −3.5 0.5 4.5 8.5 12.5
−15.5 −7.5 0.5 8.5 16.5 24.5
−23.5 −11.5 0.5 12.5 24.5 36.5

5. Solve the Eigenvalue Problem:

We now solve the eigenvalue problem:

S−1
W SBw = λw

The solution to this eigenvalue problem gives us the eigenvalues λ (which quantify the amount
of variance captured in each direction) and the eigenvectors w (which give the directions of
maximum class separation). The eigenvector corresponding to the largest eigenvalue defines
the direction of the first discriminant axis, which is the direction that maximally separates the
classes.

9

6.67 6.67 6.67 6.67 6.67 6.67
6.67 6.67 6.67 6.67 6.67 6.67
6.67 6.67 6.67 6.67 6.67 6.67
6.67 6.67 6.67 6.67 6.67 6.67
6.67 6.67 6.67 6.67 6.67 6.67
6.67 6.67 6.67 6.67 6.67 6.67

16.5 8.5 0.5 −7.5 −15.5 −23.5
8.5 4.5 0.5 −3.5 −7.5 −11.5
0.5 0.5 0.5 0.5 0.5 0.5

−7.5 −3.5 0.5 4.5 8.5 12.5
−15.5 −7.5 0.5 8.5 16.5 24.5
−23.5 −11.5 0.5 12.5 24.5 36.5

w1
w2
w3
w4
w5
w6

= λ

w1
w2
w3
w4
w5
w6

=⇒

−2.33 −1.00 0.33 1.67 3.00 4.33
−2.33 −1.00 0.33 1.67 3.00 4.33
−2.33 −1.00 0.33 1.67 3.00 4.33
−2.33 −1.00 0.33 1.67 3.00 4.33
−2.33 −1.00 0.33 1.67 3.00 4.33
−2.33 −1.00 0.33 1.67 3.00 4.33

w1
w2
w3
w4
w5
w6

= λ

w1
w2
w3
w4
w5
w6

The eigenvalues of the matrix are:

λ1 = 6.00, λ2 = 1.78×10−15, λ3 = 9.86×10−32, λ4 = 0.00, λ5 = −5.47×10−48, λ6 = −5.95×10−16

The two largest eigenvalues are:

1. λ1 = 6.00
2. λ2 = 1.78 × 10−15

The corresponding eigenvectors for the two largest eigenvalues are:

w1 =

−0.408
−0.408
−0.408
−0.408
−0.408
−0.408

, w2 =

−0.848
−0.237
−0.237
−0.237
−0.237
−0.237

By projecting the data onto the eigenvector w, we transform the original dataset into a lower-
dimensional space where class separability is maximized. For this dataset, since there are 3
classes, LDA will find up to K − 1 = 2 discriminant axes. Let’s see how.

The matrix formed by the two largest eigenvectors is:

10

W =

−0.408 −0.848
−0.408 −0.237
−0.408 −0.237
−0.408 −0.237
−0.408 −0.237
−0.408 −0.237

This matrix represents the projection directions corresponding to the two largest eigenvalues
in the Linear Discriminant Analysis process. With the eigenvectors w1 and w2, we can now
project our original dataset onto the new 2D subspace. Now, let X represent our original
dataset (where each row corresponds to an observation and each column to a feature). The
projection of the original data onto the new 2D subspace is given by:

Y = XW

Where:

• X is the 4 × 6 matrix (4 observations, 6 features),
• W is the 6 × 2 matrix of eigenvectors.

After multiplying X by W , we obtain the projected data matrix Y , which is a 4 × 2 matrix (4
observations, 2 features):

Y =

y11 y12
y21 y22
y31 y32
y41 y42

This matrix Y represents the data in the new 2D space where class separability is maximized.
So for our data

2 3 4 5 6 7
3 4 5 6 7 8
6 5 4 3 2 1
7 6 5 4 3 2

−0.408 −0.848
−0.408 −0.237
−0.408 −0.237
−0.408 −0.237
−0.408 −0.237
−0.408 −0.237

=

−11.016 −7.621
−13.464 −9.654
−8.568 −8.643
−11.016 −10.676

11

Step 6: Visualizing the Results

If we were to plot the projected data in this new 2D space, we would see the observations from
different classes are better separated, which is the ultimate goal of LDA. The two axes of this
2D space correspond to the two linear discriminants that maximize the separation between the
classes.

import numpy as np
import matplotlib.pyplot as plt

X = np.array([[2, 3, 4, 5, 6, 7],
[3, 4, 5, 6, 7, 8],
[6, 5, 4, 3, 2, 1],
[7, 6, 5, 4, 3, 2]])

W = np.array([[-0.408, -0.848],
[-0.408, -0.237],
[-0.408, -0.237],
[-0.408, -0.237],
[-0.408, -0.237],
[-0.408, -0.237]])

Y = np.dot(X, W)

Visualize the projection
plt.figure(figsize=(8, 6))
for i in range(Y.shape[0]):

plt.scatter(Y[i, 0], Y[i, 1], label=f'Obs {i+1}', s=100)
plt.text(Y[i, 0] + 0.02, Y[i, 1] + 0.02, f'Obs {i+1}', fontsize=12)

plt.title("Projected Data after LDA")
plt.xlabel('LD1 (First Linear Discriminant)')
plt.ylabel('LD2 (Second Linear Discriminant)')
plt.axhline(0, color='gray', lw=1)
plt.axvline(0, color='gray', lw=1)
plt.grid(True)
plt.legend(loc='upper right')
plt.gcf().patch.set_facecolor('#f4f4f4')
plt.gca().set_facecolor('#f4f4f4')
plt.show()

12

14 12 10 8 6 4 2 0
LD1 (First Linear Discriminant)

10

8

6

4

2

0
LD

2
(S

ec
on

d
Lin

ea
r D

isc
rim

in
an

t)

Obs 1

Obs 2

Obs 3

Obs 4

Projected Data after LDA
Obs 1
Obs 2
Obs 3
Obs 4

Summary of the Process of Eigenvalue Problem

1. Eigenvalue Calculation: We found the eigenvalues λ1 and λ2 to be the largest,
indicating the directions with the most class separability. We did find only two eigenvaleus
since total class is 3.

2. Eigenvector Calculation: We computed the eigenvectors w1 and w2 corresponding to
these eigenvalues. These eigenvectors define the directions in the original feature space
along which the class separation is maximized.

3. Projection: We projected the original dataset onto the new 2D subspace spanned by
the eigenvectors. This resulted in a new dataset in 2D, where the different classes are
more separable.

13

This completes the detailed walkthrough of solving the eigenvalue problem in LDA for our
example dataset.

Final Summary

• Within-class scatter matrix SW quantifies the spread of data points within each class,
and we calculated it for each class.

• Between-class scatter matrix SB quantifies the separation between the class means,
and we calculated it using the mean of each class and the overall mean.

• Solving the eigenvalue problem S−1
W SBw = λw gives us the directions w (eigenvectors)

that maximize class separation.

This is how LDA works step by step, using a small dataset as an example.

Python Code Example

Let’s now revisit the Python code, with an understanding of the math behind LDA. First build
our own classifier

class CustomLDA:
def __init__(self,n_components = None) -> None:

"""
Parameters:
n_components: int, optional (default=None)

Number of components to keep. If None, all components are kept
"""
self.n_components = n_components
self.eigenvalues = None
self.eigenvectors = None
self.mean_vectors = None
self.class_means = None

def fit(self, X, y):
"""
Parameters:
X: ndarray of shape (n_samples, n_features)
y: ndarray of shape (n_samples,)

Target labels (must be categorical)
"""

14

n_features = X.shape[1]
class_labels = np.unique(y)

Step1: Compute the class means mu_k for each class
self.mean_vectors = []
for c in class_labels:

self.mean_vectors.append(np.mean(X[y==c], axis=0))

Step 2: Compute the within-class scatter matrix S_W
S_W = np.zeros((n_features, n_features))
for c in class_labels:

class_scatter = np.cov(X[y==c].T, bias=True) # Covariance matrix for each class
S_W += class_scatter * (X[y==c].shape[0])

Step 3: Compute the between-class scatter matrix S_B
overall_mean = np.mean(X, axis=0)
S_B = np.zeros((n_features, n_features))

for i,mean_vector in enumerate(self.mean_vectors):
n = X[y == class_labels[i]].shape[0]
mean_differences = (mean_vector -overall_mean).reshape(n_features,1)
S_B += n*(mean_differences).dot(mean_differences.T)

Step 4: Solve the Eigenvalue problem
eigvalues, eigvectors = np.linalg.eig(np.linalg.pinv(S_W).dot(S_B))

Step 5: Sort the Eigenvalues and corresponding eigenvectors
eigvalues_sort_idx = np.argsort(np.abs(eigvalues))[::-1]
self.eigenvalues = eigvalues[eigvalues_sort_idx]
self.eigenvectors = eigvectors[:,eigvalues_sort_idx]

Step 6: Keep only the top n_components
if self.n_components:

self.eigenvectors = self.eigenvectors[:,:self.n_components]

self.class_means = np.dot(self.mean_vectors, self.eigenvectors)

def transform(self,X):
"""
Project the data onto the LDA components

15

Parameters:
X: ndarray of shape (n_samples, n_features)

Returns:
X_transformed: ndarray of shape (n_samples, n_features)
"""
return np.dot(X,self.eigenvectors)

def fit_transform(self, X, y):
"""
Fit the LDA model and transform the data.

Parameters:
X : ndarray of shape (n_samples, n_features)

Training data.
y : ndarray of shape (n_samples,)

Target labels (must be categorical).

Returns:
X_transformed : ndarray of shape (n_samples, n_components)

Transformed data after fitting.
"""
self.fit(X, y)
return self.transform(X)

def predict(self, X):
"""
Predict the class labels for new data points.

Parameters:
X : ndarray of shape (n_samples, n_features)

New data to classify.

Returns:
Predictions: ndarray of shape (n_samples,)

Predicted class labels
"""
X_projected = self.transform(X)

predictions = []
for x in X_projected:

distances = np.linalg.norm(x-self.class_means, axis=1)

16

predictions.append(np.argmin(distances))

return np.array(predictions)

def explained_variance_ratio(self):
"""
Return the percentage of variance explained by each of the selected components

Returns:
explained_variance: ndarray of shape (n_components,)

Percentage of variance explained by each selected components
"""
total = np.sum(self.eigenvalues)

return [(i/total) for i in self.eigenvalues[:self.n_components]]

Next we apply both the custom classifier and the classifier from the scikit-learn library.

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA
from sklearn.datasets import load_iris
from sklearn.metrics import accuracy_score

Load the dataset
iris = load_iris()
X = iris.data
y = iris.target

Standardize the dataset (optional but often improves performance)
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

Split into training and test sets
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.3, random_state=42)

Apply LDA from the scikit-learn library
lda1 = LDA(n_components=2) # Reduce to 2 dimensions
X_train_lda1 = lda1.fit_transform(X_train, y_train)
X_test_lda1 = lda1.transform(X_test)

17

Apply LDA from the custom built classifier
lda2 = CustomLDA(n_components=2) # Reduce to 2 dimensions
X_train_lda2 = lda2.fit_transform(X_train, y_train)
X_test_lda2 = lda2.transform(X_test)

Visualize the LDA-transformed data
fig, axes = plt.subplots(1,2, figsize=(9.5,4))

axes[0].scatter(X_train_lda1[:, 0], X_train_lda1[:, 1], c=y_train, cmap='rainbow', edgecolor='k', s=100)
axes[0].set_xlabel('LD1')
axes[0].set_ylabel('LD2')
axes[0].set_title('Scikit-learn')
axes[1].scatter(X_train_lda2[:, 0], X_train_lda2[:, 1], c=y_train, cmap='rainbow', edgecolor='k', s=100)
axes[1].set_xlabel('LD1')
axes[1].set_ylabel('LD2')
axes[1].set_title('Custom')
for ax in axes:

ax.set_facecolor('#f4f4f4')
plt.gcf().patch.set_facecolor('#f4f4f4')
fig.suptitle('LDA: Projection of the Iris Dataset')
plt.show()

/opt/hostedtoolcache/Python/3.10.15/x64/lib/python3.10/site-packages/matplotlib/cbook.py:1762: ComplexWarning:

Casting complex values to real discards the imaginary part

/opt/hostedtoolcache/Python/3.10.15/x64/lib/python3.10/site-packages/matplotlib/collections.py:197: ComplexWarning:

Casting complex values to real discards the imaginary part

18

7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
LD1

3

2

1

0

1

2

3
LD

2
Scikit-learn

2 1 0 1
LD1

1.0

0.5

0.0

0.5

1.0

LD
2

Custom
LDA: Projection of the Iris Dataset

Next, apply LDA as a classifiers for the actual classification

lda_classifier1 = LDA()
lda_classifier1.fit(X_train, y_train)
y_pred1 = lda_classifier1.predict(X_test)

lda_classifier2 = CustomLDA()
lda_classifier2.fit(X_train, y_train)
y_pred2 = lda_classifier2.predict(X_test)

Check accuracy
accuracy1 = accuracy_score(y_test, y_pred1)
accuracy2 = accuracy_score(y_test, y_pred2)
print(f'sklearn LDA Classifier Accuracy: {accuracy1 * 100:.2f}% and \ncustom LDA Classifier Accuracy: {accuracy2 * 100:.2f}%')

sklearn LDA Classifier Accuracy: 100.00% and
custom LDA Classifier Accuracy: 95.56%

Not too bad, huh! Let’s see the confusion matrix for our custom classifier

from sklearn.metrics import confusion_matrix

conf_mat = confusion_matrix(y_test, y_pred2)

19

print(pd.DataFrame(
conf_mat,
columns=['Pred: Setosa','Pred: Virginica', 'Pred: Versicolor'],
index=['Actual: Setosa','Actual: Virginica', 'Actual: Versicolor']

))

Pred: Setosa Pred: Virginica Pred: Versicolor
Actual: Setosa 19 0 0
Actual: Virginica 0 11 2
Actual: Versicolor 0 0 13

Conclusion

Linear Discriminant Analysis (LDA) is a powerful technique for dimensionality reduction and
classification. Its goal is to find directions (linear combinations of the original features) that
best separate the classes by maximizing between-class variance while minimizing within-class
variance.

Disclaimer

For the mathematical explanation, I used generative AI to produce the matrices and vectors
and their manipulations. So it won’t be surprising if a calculation mistake is found. The custom
python class was created by the help of ChatGPT4

References

• Fisher, R.A. (1936). “The Use of Multiple Measurements in Taxonomic Problems.”
Annals of Eugenics, 7(2), 179–188.

• Murphy, K. P. (2012). Machine Learning: A Probabilistic Perspective. MIT Press.

• Strang, G. (2016). Introduction to Linear Algebra (5th ed.). Wellesley-Cambridge Press.

• Lay, D. C. (2011). Linear Algebra and Its Applications (4th ed.). Pearson.

20

Share on

�

ï

�

You may also like

21

	Introduction
	Mathematical Foundation of LDA
	Dimensionality Reduction
	Dataset
	1. Compute Class Means \mu_k for each class:
	2. Compute Overall Mean \mu:
	3. Compute the Within-Class Scatter Matrix S_W:
	4. Compute the Between-Class Scatter Matrix S_B:
	5. Solve the Eigenvalue Problem:
	Step 6: Visualizing the Results
	Summary of the Process of Eigenvalue Problem
	Final Summary

	Python Code Example
	Conclusion
	Disclaimer

	References

