Decentralized SGHLMC

Numerical Experiments

Conclusion O

MAP 5932 Stochastic Optimization FSU Mathematics Spring 2023 | Course Final Review Presentation.

Presented by Rafiq Islam

2023-10-05

 Decentralized SGHLMC

Numerical Experiments

Conclusion 0

An article from the Journal of Machine Learning Research

Article:

Decentralized Stochastic Gradient Langevin Dynamics and Hamiltonian Monte Carlo

Mert Gürbüzbalaban

Department of Management Science and Information Systems Rutgers Business School, Piscataway, NJ 008854, USA

• Xuefeng Gao

Department of Systems Engineering and Engineering Management, The Chinese University of Hong Kong

• Yuanhan Hu

Department of Management Science and Information Systems Rutgers Business School, Piscataway, NJ 008854, USA

• Lingjiong Zhu

Department of Mathematics

Florida State University, Tallahassee, FL 32306, USA

Introduction

• Recent decades have witnessed the era of big data, and there has been an exponential growth in the amount of data collected and stored with ever-increasing rates

Introduction

- Recent decades have witnessed the era of big data, and there has been an exponential growth in the amount of data collected and stored with ever-increasing rates
- Since the rate at which data is generated is often outpacing our ability to analyze it in terms of computational resources at hand, there has been a lot of recent interests for developing scaleable machine learning algorithms which are efficient on large datasets.

Introduction

- Recent decades have witnessed the era of big data, and there has been an exponential growth in the amount of data collected and stored with ever-increasing rates
- Since the rate at which data is generated is often outpacing our ability to analyze it in terms of computational resources at hand, there has been a lot of recent interests for developing scaleable machine learning algorithms which are efficient on large datasets.
- In the modern world, digital devices such as smart phones, tablets, wearables, sensors or video cameras are major sources of data generation.

• Often these devices are connected over a communication network (such as a wireless network or a sensor network) that has a high latency or a limited bandwidth.

- Often these devices are connected over a communication network (such as a wireless network or a sensor network) that has a high latency or a limited bandwidth.
- Because of communication constraints and privacy constraints, gathering all these data for centralized processing is often impractical or infeasible.

- Often these devices are connected over a communication network (such as a wireless network or a sensor network) that has a high latency or a limited bandwidth.
- Because of communication constraints and privacy constraints, gathering all these data for centralized processing is often impractical or infeasible.
- Decentralized machine learning algorithms have received a lot of attention for such applications where agents can collaboratively learn a predictive model without sharing their own data but sharing only their local models with their immediate neighbors at some frequency to generate a global model.

• In this presentation, we consider both distributed optimization and decentralized sampling problems

- In this presentation, we consider both distributed optimization and decentralized sampling problems
- In particular, for decentralized sampling algorithms, we propose and study decentralized stochastic gradient Langevin dynamics (DE-SGLD) and decentralized stochastic gradient Hamiltonian Monte Carlo (DE-SGHMC)

- In this presentation, we consider both distributed optimization and decentralized sampling problems
- In particular, for decentralized sampling algorithms, we propose and study decentralized stochastic gradient Langevin dynamics (DE-SGLD) and decentralized stochastic gradient Hamiltonian Monte Carlo (DE-SGHMC)
- For distributed optimization, we will consider distributed stochastic gradient (D-SG) and distributed accelerated stochastic gradient (D-ASG)

Decentralized Bayesian Inference

• Before introducing the DE-SGLD algorithm, we consider the problem of decentralized Bayesian inference.

Decentralized Bayesian Inference

- Before introducing the DE-SGLD algorithm, we consider the problem of decentralized Bayesian inference.
- We have N agents connected over a network G = (V, E) where V = {1, 2, 3, · · · , N} represents the agents and E ⊆ V × V is the set of edges; i.e., i and j are connected if (i, j) ∈ E where the network is undirected, i.e., (i, j) ∈ E then (j, i) ∈ E

Decentralized Bayesian Inference

- Before introducing the DE-SGLD algorithm, we consider the problem of decentralized Bayesian inference.
- We have N agents connected over a network G = (V, E) where V = {1, 2, 3, · · · , N} represents the agents and E ⊆ V × V is the set of edges; i.e., i and j are connected if (i, j) ∈ E where the network is undirected, i.e., (i, j) ∈ E then (j, i) ∈ E
- Let A = [a₁, a₂, ··· , a_n] be a dataset consisting of n independent and identically distributed (i.i.d) data vectors sampled from a parameterized distribution p(A|x) where the parameter x ∈ ℝ^d has a common prior distribution p(x)

Due to the decentralization in the data collection, each agent *i* possesses a subset A_i of the data where A_i = {a₁ⁱ, a₂ⁱ, ..., a_{ni}ⁱ} and n_i is the number of samples of agent *i*

- Due to the decentralization in the data collection, each agent *i* possesses a subset A_i of the data where A_i = {a₁ⁱ, a₂ⁱ, ..., a_{ni}ⁱ} and n_i is the number of samples of agent *i*
- The data is held disjointly over agents, i.e., $A = \bigcup_i A_i$ with $A_i \cap A_j = \emptyset$ for $i \neq j$
- The goal is to sample from the posterior distribution

 $p(x|A) \propto p(A|x)p(x)$

- Due to the decentralization in the data collection, each agent *i* possesses a subset A_i of the data where A_i = {a₁ⁱ, a₂ⁱ, ··· .a_{ni}ⁱ} and n_i is the number of samples of agent *i*
- The data is held disjointly over agents, i.e., $A = \bigcup_i A_i$ with $A_i \cap A_j = \emptyset$ for $i \neq j$
- The goal is to sample from the posterior distribution

$$p(x|A) \propto p(A|x)p(x)$$

• Since the data points are independent, the log-likelihood function will be additive;

$$\log p(A|x) = \sum_{i=1}^{N} \sum_{j=1}^{n_i} \log p(a_j^i|x)$$

8 / 44

Thus if we set

$$f(x) = \sum_{i=1}^{N} f_i(x), \ f_i(x) = -\sum_{j=1}^{n_i} \log p(a_j^i | x) - \frac{1}{N} \log p(x) \ (1)$$

the aim is to sample from the posterior distribution with density $\pi(x) = p(x|A) \propto e^{-f(x)}$

• Thus if we set

$$f(x) = \sum_{i=1}^{N} f_i(x), \ f_i(x) = -\sum_{j=1}^{n_i} \log p(a_j^i | x) - \frac{1}{N} \log p(x) \ (1)$$

the aim is to sample from the posterior distribution with density $\pi(x) = p(x|A) \propto e^{-f(x)}$

• The functions $f_i(x)$ are called "component functions" where $f_i(x)$ is associated to the local data of agent *i* and is only accessible by the agent *i*.

Decentralized SGHLMC

Numerical Experiments

Decentralized Stochastic Gradient Langevin Dynamics (SGLD)

• Let $x_i^{(k)}$ denote the local variable of node *i* at iteration *k*

- Let $x_i^{(k)}$ denote the local variable of node *i* at iteration *k*
- The decentralized SGLD (DE-SGLD) algorithm consists of a weighted averaging with the local variables x_j^(k) of node i's immediate neighbors j ∈ Ω_i := {j : (i, j) ∈ G as well as a stochastic gradient step over the node's component function f_i(x), i.e.,

$$x_i^{(k+1)} = \sum_{j \in \Omega_i} W_{ij} x_j^{(k)} - \eta \tilde{\nabla} f_i(x_i^{(k)}) + \sqrt{2\eta} w_i^{(k+1)}$$
(2)

- Let $x_i^{(k)}$ denote the local variable of node *i* at iteration *k*
- The decentralized SGLD (DE-SGLD) algorithm consists of a weighted averaging with the local variables x_j^(k) of node *i*'s immediate neighbors j ∈ Ω_i := {j : (i, j) ∈ G as well as a stochastic gradient step over the node's component function f_i(x), i.e.,

$$x_i^{(k+1)} = \sum_{j \in \Omega_i} W_{ij} x_j^{(k)} - \eta \tilde{\nabla} f_i(x_i^{(k)}) + \sqrt{2\eta} w_i^{(k+1)}$$
(2)

• $\eta > 0$ is the step size

- Let $x_i^{(k)}$ denote the local variable of node *i* at iteration *k*
- The decentralized SGLD (DE-SGLD) algorithm consists of a weighted averaging with the local variables x_j^(k) of node *i*'s immediate neighbors j ∈ Ω_i := {j : (i, j) ∈ G as well as a stochastic gradient step over the node's component function f_i(x), i.e.,

$$x_{i}^{(k+1)} = \sum_{j \in \Omega_{i}} W_{ij} x_{j}^{(k)} - \eta \tilde{\nabla} f_{i}(x_{i}^{(k)}) + \sqrt{2\eta} w_{i}^{(k+1)}$$
(2)

- $\eta > 0$ is the step size
- W_{ij} are the entries of a doubly stochastic wight matrix W with W_{ij} > 0 only if i is connected to j

- Let $x_i^{(k)}$ denote the local variable of node *i* at iteration *k*
- The decentralized SGLD (DE-SGLD) algorithm consists of a weighted averaging with the local variables x_j^(k) of node *i*'s immediate neighbors j ∈ Ω_i := {j : (i, j) ∈ G as well as a stochastic gradient step over the node's component function f_i(x), i.e.,

$$x_{i}^{(k+1)} = \sum_{j \in \Omega_{i}} W_{ij} x_{j}^{(k)} - \eta \tilde{\nabla} f_{i}(x_{i}^{(k)}) + \sqrt{2\eta} w_{i}^{(k+1)}$$
(2)

- $\eta > 0$ is the step size
- W_{ij} are the entries of a doubly stochastic wight matrix W with $W_{ij} > 0$ only if i is connected to j
- For example, we can take $W = I \delta L$ where $\delta > 0$ and L is the graph Laplacian

Decentralized SGLD (cont.)

 w_i^(k) are independent and identically distributed (i.i.d.) Gaussian random variables with zero mean and identity covariance matrix for every *i* and *k*.

Decentralized SGLD (cont.)

- w_i^(k) are independent and identically distributed (i.i.d.) Gaussian random variables with zero mean and identity covariance matrix for every *i* and *k*.

Decentralized SGLD (cont.)

- w_i^(k) are independent and identically distributed (i.i.d.) Gaussian random variables with zero mean and identity covariance matrix for every *i* and *k*.
- When the number of data points n_i is large, stochastic estimates $\tilde{\nabla} f_i(x_i^{(k)})$ are cheaper to compute compared to actual gradients $\nabla f_i(x_i^{(k)})$ and can for instance be estimated from a minibatch of data, i.e. from randomly selected smaller subsets of data. This allows the DE-SGLD method to be scaleable to big data settings when n_i can be large.

• Our objective is to sample from a target distribution with density $\pi(x) \propto e^{-f(x)}$ on \mathbb{R}^d where

$$f(x) := \sum_{i=1}^{N} f_i(x)$$
 (3)

Decentralized SGLD (cont.)

• Our objective is to sample from a target distribution with density $\pi(x) \propto e^{-f(x)}$ on \mathbb{R}^d where

$$f(x) := \sum_{i=1}^{N} f_i(x)$$
 (3)

 We assume for every i = 1, 2, · · · , N, f_i is µ−strongly convex and L−smooth, that is for every x, y ∈ ℝ^d

$$\frac{L}{2}||x-y||^2 \ge f_i(x) - f_i(y) - \nabla f_i(y)^T(x-y) \ge \frac{\mu}{2}||x-y||^2$$
(4)

Decentralized SGHLMC

Numerical Experiments

Decentralized SGLD (cont.)

Assumption 1

We assume that the gradient noise defined as

$$\xi_i^{(k+1)} := \tilde{\nabla} f_i\left(x_i^{(k)}\right) - \nabla f_i\left(x_i^{(k)}\right)$$
(5)

is unbiased with a finite second moment, i.e.,

$$\mathbb{E}\left[\xi_{i}^{(k+1)}\middle|\mathcal{F}_{k}\right] = 0, \quad \mathbb{E}\left\|\xi_{i}^{(k+1)}\right\|^{2} \leq \sigma^{2}$$
(6)

where \mathcal{F}_k is the natural filtration of the iterates $x_i^{(k)}$ up to (and including) time k.

 Decentralized SGHLMC

Numerical Experiments

Decentralized SGLD (cont.)

• Based on (5), we can rewrite the DE-SGLD iterations in (2) in terms of the gradient noise $\xi_i^{(k+1)}$ as

$$x_{i}^{(k+1)} = \sum_{j \in \Omega_{i}} W_{ij} x_{j}^{(k)} - \eta \nabla f_{i} \left(x_{i}^{(k)} \right) - \eta \xi_{i}^{(k+1)} + \sqrt{2\eta} w_{i}^{(k+1)}$$

Decentralized SGLD

The Article

Decentralized SGHLMC

Numerical Experiments

Decentralized SGLD (cont.)

• Based on (5), we can rewrite the DE-SGLD iterations in (2) in terms of the gradient noise $\xi_i^{(k+1)}$ as

$$x_{i}^{(k+1)} = \sum_{j \in \Omega_{i}} W_{ij} x_{j}^{(k)} - \eta \nabla f_{i} \left(x_{i}^{(k)} \right) - \eta \xi_{i}^{(k+1)} + \sqrt{2\eta} w_{i}^{(k+1)}$$

• By defining the column vector

$$x^{(k)} := \left[\left(x_1^{(k)} \right)^T, \left(x_2^{(k)} \right)^T, \cdots, \left(x_N^{(k)} \right)^T \right]^T \in \mathbb{R}^{Nd}$$

concetenates the local decision variables into a single vector, we can express the DE-SGLD iterations further as

$$x^{(k+1)} = \mathcal{W}x^{k} - \eta\nabla F(x^{(k)}) - \eta\xi^{(k+1)} + \sqrt{2\eta}w^{(k+1)}$$
(7)

with $\mathcal{W} = \mathcal{W} \otimes I_d$, and $F(x) := F(x_1, x_2, \cdots, x_N) = \sum_{i=1}^N f_i(x_i) = F(x_1, x_2, \cdots, x_N) = \sum_{i=1}^N f_i(x_i) = F(x_1, x_2, \cdots, x_N)$ Decentralized SGHLMC

Numerical Experiments

Decentralized SGLD (cont.)

• In equation (7),

$$w^{(k+1)} := \left[\left(w_1^{(k)} \right)^T, \left(w_2^{(k)} \right)^T, \cdots, \left(w_N^{(k)} \right)^T \right]^T$$

are i.i.d. Gaussian noise with mean 0 and with a covariance matrix given by the identity matrix.

Decentralized SGLD

Decentralized SGHLMC

Numerical Experiments

イロト イヨト イヨト --

Conclusion O

Decentralized SGLD (cont.)

• In equation (7),

$$w^{(k+1)} := \left[\left(w_1^{(k)} \right)^T, \left(w_2^{(k)} \right)^T, \cdots, \left(w_N^{(k)} \right)^T \right]^T$$

are i.i.d. Gaussian noise with mean 0 and with a covariance matrix given by the identity matrix.

In equation (7),

$$\xi^{(k+1)} := \left[\left(\xi_1^{(k)} \right)^T, \left(\xi_2^{(k)} \right)^T, \cdots, \left(\xi_N^{(k)} \right)^T \right]^T$$

are the gradient nose so that

$$\mathbb{E}\left[\xi^{(k+1)}\Big|\mathcal{F}_k\right] = 0, \quad \mathbb{E}\|\xi^{(k+1)}\|^2 \le \sigma^2 N \tag{8}$$

15 / 44

3

ne Article Decentralized SGLD

Decentralized SGHLMC

Numerical Experiments

Conclusion O

Decentralized SGLD (cont.)

• Let us define the average at k-th iteration

$$\bar{x}^{(k)} := \frac{1}{N} \sum_{i=1}^{N} x_i^{(k)}$$
rticle Decentralized SGLD

Decentralized SGHLMC

Numerical Experiments

Conclusion O

Decentralized SGLD (cont.)

• Let us define the average at k-th iteration

$$\bar{x}^{(k)} := \frac{1}{N} \sum_{i=1}^{N} x_i^{(k)}$$

 $\bullet\,$ Since ${\mathcal W}$ is doubly stochastic, we get

$$\bar{x}^{(k+1)} = \bar{x}^{(k)} - \eta \frac{1}{N} \sum_{i=1}^{N} \nabla f_i\left(x_i^{(k)}\right) - \eta \bar{\xi}^{(k+1)} + \sqrt{2\eta} \bar{w}^{(k+1)}$$
(9)

rticle Decentralized SGLD

Decentralized SGHLMC

Numerical Experiments

Conclusion 0

Decentralized SGLD (cont.)

• Let us define the average at k-th iteration

$$\bar{x}^{(k)} := \frac{1}{N} \sum_{i=1}^{N} x_i^{(k)}$$

 $\bullet\,$ Since ${\mathcal W}$ is doubly stochastic, we get

$$\bar{x}^{(k+1)} = \bar{x}^{(k)} - \eta \frac{1}{N} \sum_{i=1}^{N} \nabla f_i\left(x_i^{(k)}\right) - \eta \bar{\xi}^{(k+1)} + \sqrt{2\eta} \bar{w}^{(k+1)}$$
(9)

$$\bar{w}^{(k+1)} := \frac{1}{N} \sum_{i=1}^{N} w_i^{(k+1)} \sim \frac{1}{\sqrt{N}} \mathcal{N}(0, I_d), \quad \bar{\xi}^{(k+1)} := \frac{1}{N} \sum_{i=1}^{N} \xi_i^{(k+1)}$$
(10)

that satisfies

$$\mathbb{E}\left[\bar{\xi}^{(k+1)}\Big|\mathcal{F}_k\right] = 0, \quad \mathbb{E}\|\bar{\xi}^{(k+1)}\|^2 \leq \frac{\sigma^2}{N} \leq 11)$$

• We now state the main result of DE-SGLD, which bounds the average of W_2 distance between the distribution of $x_i^{(k)}$ and the target distribution π (that has a density proportional to exp(-f(x))) over $1 \le i \le N$.

The Article Decentralized SGLD Decentralized SGHLMC Numerical Experiments Conclusion Decentralized SGLD (cont.) Conclusion <t

- We now state the main result of DE-SGLD, which bounds the average of W_2 distance between the distribution of $x_i^{(k)}$ and the target distribution π (that has a density proportional to exp(-f(x))) over $1 \le i \le N$.
- This result provides also a bound on the \mathcal{W}_2 distance of the node averages $\bar{x}^{(k)}$ and the target distribution π

Decentralized SGLD (cont.)

Decentralized SGLD

The Article

• We now state the main result of DE-SGLD, which bounds the average of W_2 distance between the distribution of $x_i^{(k)}$ and the target distribution π (that has a density proportional to exp(-f(x))) over $1 \le i \le N$.

Decentralized SGHLMC

- This result provides also a bound on the \mathcal{W}_2 distance of the node averages $\bar{x}^{(k)}$ and the target distribution π
- To facilitate the presentation, we define the second largest magnitude of the eigenvalues of *W* as

$$\bar{\gamma} := \max\left\{ \left| \lambda_{2}^{W} \right|, \left| \lambda_{N}^{W} \right| \right\}$$
(12)

Numerical Experiments

Conclusion

which is related to the connectivity of the graph ${\mathcal G}$

Theorem 1

Assume
$$\mathbb{E}||x^{(0)}||^2 < \infty$$
 and $\eta \in (0, \bar{\eta})$ where
 $\bar{\eta} = \min\left(\frac{1+\lambda_N^W}{L}, \frac{1}{L+\mu}\right)$. Then, for every k , DE-SGLD iterates $x_i^{(k)}$
given by (2) and their average $\bar{x}^{(k)}$ satisfy
 $\mathcal{W}_2\left(\mathcal{L}\left(\bar{x}^{(k)}\right), \pi\right)$
 $\leq (1-\mu\eta)^k \left(\sqrt{\mathbb{E}}||\bar{x}^{(0)}-x_*||^2 + \sqrt{2\mu^{-1}dN^{-1}}\right)$
 $+ \left(\bar{\gamma}^2 \frac{1-\eta\mu\left(1-\frac{\eta L}{2}\right)^k - \bar{\gamma}^{2k}}{1-\eta\mu\left(1-\frac{\eta L}{2}\right) - \bar{\gamma}^2}\right)^{1/2} \frac{2L}{\sqrt{N}} \left(\mathbb{E}||x^{(0)}||^2\right)^{1/2} + \sqrt{\eta}E_1$
where $E_1 := \frac{1.65L}{\mu}\sqrt{dN^{-1}} + \frac{\sigma}{\sqrt{\mu(1-\frac{\eta L}{2})N}}$
 $+ \left(\frac{\eta}{\mu(1-\frac{\eta L}{2})} + \frac{1}{\mu^2(1-\frac{\eta L}{2})^2}\right)^{1/2} \cdot \left(\frac{4L^2D^2\eta}{N(1-\bar{\gamma}^2)} + \frac{4L^2D^2\eta}{(1-\bar{\gamma}^2)^2} + \frac{8L^2d}{(1-\bar{\gamma}^2)^2}\right)$

Numerical Experiments

Theorem 1 (cont.)

Furthermore,

$$\frac{1}{N} \sum_{i=1}^{N} W_{2} \left(\mathcal{L} \left(\bar{x}^{(k)} \right), \pi \right) \\
\leq (1 - \mu \eta)^{k} \left(\sqrt{\mathbb{E} \| \bar{x}^{(0)} - x_{*} \|^{2}} + \sqrt{2\mu^{-1} dN^{-1}} \right) + \frac{2 \bar{\gamma}^{k}}{\sqrt{N}} \left(\mathbb{E} \| |x^{(0)} \|^{2} \right)^{1/2} \\
+ \left(\bar{\gamma}^{2} \frac{1 - \eta \mu \left(1 - \frac{\eta L}{2} \right)^{k} - \bar{\gamma}^{2k}}{1 - \eta \mu \left(1 - \frac{\eta L}{2} \right) - \bar{\gamma}^{2}} \right)^{1/2} \frac{2L}{\sqrt{N}} \left(\mathbb{E} \| |x^{(0)} \|^{2} \right)^{1/2} + \sqrt{\eta} E_{2} + \eta E_{3} \\$$
(13)

with $E_2 = E_1 + \frac{2\sqrt{2d}}{\sqrt{1-\tilde{\gamma}^2}}$ and $E_3 = \frac{2D}{\sqrt{N}(1-\tilde{\gamma})} + \frac{2\sigma}{\sqrt{1-\tilde{\gamma}^2}}$, where x_* is the minimizer of $f, \bar{x}^{(0)} = \frac{1}{N} \sum_{i=1}^{N} x_i^{(0)}$, and D is defined in (16)

Discussions

• We observe that

$$\lim_{k\to\infty}\sup\mathcal{W}_2\left(\mathcal{L}\left(\bar{x}^{(k)}\right),\pi\right)=\mathcal{O}(\sqrt{\eta})$$

where $\mathcal{O}(.)$ hides other constants (d, μ, L, σ, N) and $\bar{\gamma}$

Discussions

• We observe that

$$\lim_{k\to\infty} \sup \mathcal{W}_2\left(\mathcal{L}\left(\bar{x}^{(k)}\right),\pi\right) = \mathcal{O}(\sqrt{\eta})$$

where $\mathcal{O}(.)$ hides other constants (d, μ, L, σ, N) and $\bar{\gamma}$

• With the iteration budget K, we can choose $\eta = \frac{c \log \sqrt{K}}{\mu K}$ for a constant c>1

Discussions

We observe that

$$\lim_{k\to\infty} \sup \mathcal{W}_2\left(\mathcal{L}\left(\bar{x}^{(k)}\right),\pi\right) = \mathcal{O}(\sqrt{\eta})$$

where $\mathcal{O}(.)$ hides other constants (d, μ, L, σ, N) and $\bar{\gamma}$

- With the iteration budget K, we can choose $\eta = \frac{c \log \sqrt{K}}{\mu K}$ for a constant c>1
- Consequently,

$$\mathcal{W}_2(\mathcal{L}(\bar{x}^{(2k)}), \pi) = \mathcal{O}\left(\frac{1}{\left(\sqrt{K}\right)^c} + \frac{\sqrt{c\log K}}{\sqrt{K}}\right) = \mathcal{O}\left(\frac{\sqrt{\log K}}{\sqrt{K}}\right)$$

where the last $\mathcal{O}(.)$ term hides constants that depends on $x^{(0)}, d, \mu, L, \sigma, \bar{\gamma}, N$ and c

Outline of the Proof

Decentralized SGLD

• To facilitate the analysis, let us define xk from the iterates:

Decentralized SGHLMC

$$x_{k+1} = x_k - \eta \frac{1}{N} \nabla f(x_k) + \sqrt{2\eta} \bar{w}^{(k+1)}$$
(14)

where
$$x_0 = \bar{x}_0 = \frac{1}{N} \sum_{i=1}^{N} x_i^{(0)}$$

Numerical Experiments

The Article

Decentralized SGLD

• To facilitate the analysis, let us define xk from the iterates:

Decentralized SGHLMC

$$x_{k+1} = x_k - \eta \frac{1}{N} \nabla f(x_k) + \sqrt{2\eta} \bar{w}^{(k+1)}$$
(14)

where $x_0 = \bar{x}_0 = \frac{1}{N} \sum_{i=1}^{N} x_i^{(0)}$

 This is an Euler-Maruyama discretization (with stepsize η) of the continuous-time overdamped Langevin diffusion:

$$dX_t = -\frac{1}{N}\nabla f(X_t)dt + \sqrt{2N^{-1}}dW_t$$
(15)

wher W_t is a standard *d*-dimensional Brownian motion

Conclusion

Decentralized SGLD

Decentralized SGHLMC

Numerical Experiments

Conclusion

Outline of the Proof (cont.)

• To bound the average of \mathcal{W}_2 distance between $\mathcal{L}(x_i^{(k)})$ and π over $1 \leq i \leq N$, main idea of our proof technique is to bound the following three terms:

Decentralized SGLD Decentralized SGLD Occord

Decentralized SGHLMC

Numerical Experiments 0000000000

Outline of the Proof (cont.)

- To bound the average of W₂ distance between L(x_i^(k)) and π over 1 ≤ i ≤ N, main idea of our proof technique is to bound the following three terms:
- The L^2 distance between $\bar{x}^{(k)}$ and their average (mean)

$$\bar{x}^{(k)} = \frac{\sum_{i=1}^{N}}{N}$$

for $1 \leq i \leq N$

Outline of the Proof (cont.)

The Article

- To bound the average of W₂ distance between L(x_i^(k)) and π over 1 ≤ i ≤ N, main idea of our proof technique is to bound the following three terms:
- The L^2 distance between $\bar{x}^{(k)}$ and their average (mean)

$$\bar{x}^{(k)} = \frac{\sum_{i=1}^{N}}{N}$$

for $1 \leq i \leq N$

The L² distance between the average iterate x
^(k) and iterates x_k obtained from Euler-Maruyama discretization of overdamped Langevin SDE; and

Outline of the Proof (cont.)

Decentralized SGLD

The Article

- To bound the average of \mathcal{W}_2 distance between $\mathcal{L}(x_i^{(k)})$ and π over $1 \le i \le N$, main idea of our proof technique is to bound the following three terms:
- The L^2 distance between $\bar{x}^{(k)}$ and their average (mean)

$$\bar{x}^{(k)} = \frac{\sum_{i=1}^{N}}{N}$$

for 1 < i < N

- **2** The L^2 distance between the average iterate $\bar{x}^{(k)}$ and iterates x_k obtained from Euler-Maruyama discretization of overdamped Langevin SDE; and
- **(a)** The \mathcal{W}_2 distance between $\mathcal{L}(x_k)$ and π , i.e., the convergence of Euler-Maruyama discretization of the overdamped Langevin SDE.

Let $x_* \in \mathbb{R}^d$ denote the unique minimizer of f(x), and $x^* = [x_*^T, x_*^T, x_*^T, \cdots, x_*^T]^T$ is an Nd-dimensional vector.

Lemma 2

Under the assumptions of Theorem 1, we have, $\mathbb{E} \|\nabla F(x^{(k)})\|^2 \leq D^2$ for an k, where

$$D^{2} = 4L^{2}\mathbb{E}\|x^{(0)} - x^{*}\|^{2} + 8L^{2}\frac{C_{1}^{2}\eta^{2}N}{(1 - \bar{\gamma})^{2}} + \frac{2L^{2}(\eta\sigma^{2}N + 2dN)}{\mu(1 + \lambda_{N}^{W} - \eta L)} + 4\|\nabla F(x^{*})\|^{2}$$
(16)

where

$$C_{1} = \bar{C}_{1} \left(1 + \frac{2(L+\mu)}{\mu} \right), \text{ and } \bar{C}_{1} = \sqrt{2L \sum_{i=1}^{N} (f_{i}(0) - f_{i}^{*})}, f_{i}^{*} = \min_{x \in \mathbb{R}^{d}} f_{i}(x)$$
(17)

Article Decentralized SGLD

Decentralized SGHLMC

Numerical Experiments

Conclusion

Outline of the Proof (cont.)

• It is clear from the DE-SGLD iterations that the deviations between the iterates $x_i^{(k)}$ and their means $\bar{x}^{(k)}$ depend on the magnitude of the gradients $\nabla F(x^{(k)})$, the stepsize as well as the magnitude of the injected Gaussian noise.

 Decentralized SGHLMC

Numerical Experiments

Conclusion O

Outline of the Proof (cont.)

The Article

- It is clear from the DE-SGLD iterations that the deviations between the iterates $x_i^{(k)}$ and their means $\bar{x}^{(k)}$ depend on the magnitude of the gradients $\nabla F(x^{(k)})$, the stepsize as well as the magnitude of the injected Gaussian noise.
- Building on Lemma 2 which gives us a control over the second moment of the gradients, we provide uniform L₂ bounds between the iterates x_i^(k) and their means.

 Decentralized SGHLMC

Numerical Experiments

A B < A B</p>

Conclusion 0

Outline of the Proof (cont.)

- It is clear from the DE-SGLD iterations that the deviations between the iterates $x_i^{(k)}$ and their means $\bar{x}^{(k)}$ depend on the magnitude of the gradients $\nabla F(x^{(k)})$, the stepsize as well as the magnitude of the injected Gaussian noise.
- Building on Lemma 2 which gives us a control over the second moment of the gradients, we provide uniform L₂ bounds between the iterates x_i^(k) and their means.

Lemma 3

The Article

Under the assumptions of Theorem 1, for any k, we have

$$\sum_{i=1}^{N} \mathbb{E} \|x_{i}^{(k)} - \bar{x}^{(k)}\|^{2} \leq 4\bar{\gamma}^{2k} \mathbb{E} \|x^{(0)}\|^{2} + \frac{4D^{2}\eta^{2}}{(1-\bar{\gamma})^{2}} + \frac{4\sigma^{2}N\eta^{2}}{(1-\bar{\gamma}^{2})} + \frac{8dN\eta}{(1-\bar{\gamma}^{2})}$$

where D is defined in (16) and $\bar{\gamma}$ is given in (12)

Decentralized SGLD

Decentralized SGHLMC

Numerical Experiments

Conclusion O

Outline of the Proof (cont.)

Note that we can deduce from (9) that

$$\bar{x}^{(k+1)} = \bar{x}^{(k)} - \eta \frac{1}{N} \nabla f(\bar{x}^{(k)}) + \eta \mathcal{E}_{k+1} - \eta \bar{\xi}^{(k+1)} + \sqrt{2\eta} \bar{w}^{(k+1)}$$
(18)

Numerical Experiments

Outline of the Proof (cont.)

Note that we can deduce from (9) that

$$\bar{x}^{(k+1)} = \bar{x}^{(k)} - \eta \frac{1}{N} \nabla f(\bar{x}^{(k)}) + \eta \mathcal{E}_{k+1} - \eta \bar{\xi}^{(k+1)} + \sqrt{2\eta} \bar{w}^{(k+1)}$$
(18)

where

$$\mathcal{E}_{k+1} = \frac{1}{N} \sum_{i=1}^{N} \left[\nabla f_i(\bar{x}^{(k)}) - \nabla f_i(x_i^{(k)}) \right]$$
(19)

Lemma 4

Under the assumptions of Theorem 1, for any k, we have

$$\mathbb{E}\|\mathcal{E}_{k+1}\|^2 \leq \frac{4\bar{\gamma}^{2k}}{N}\mathbb{E}\|x^{(0)}\|^2 + \frac{4L^2D^2\eta^2}{N(1-\bar{\gamma})^2} + \frac{4L^2\sigma^2\eta^2}{(1-\bar{\gamma}^2)} + \frac{8d\eta}{(1-\bar{\gamma}^2)}$$

where \mathcal{E}_{k+1} is defined in (19)

Numerical Experiments

Conclusion O

L^2 distance between the mean and the discretized overdamped SDE

Lemma 5

Under the assumptions of Theorem 1, for every k,

$$\begin{split} & \mathbb{E}\|\bar{x}^{(k)} - x_k\|^2 \\ & \leq \eta \left(\frac{\eta}{\mu(1 - \frac{\eta L}{2})} + \frac{(1 + \eta L)^2}{\mu^2(1 - \frac{\eta L}{2})^2}\right) \left(\frac{4L^2 D^2 \eta}{N(1 - \bar{\gamma})^2} + \frac{4L^2 \sigma^2 \eta}{(1 - \bar{\gamma}^2)} + \frac{8L^2 d}{(1 - \bar{\gamma}^2)}\right) \\ & + \frac{\eta \sigma^2}{\mu(1 - \frac{\eta L}{2})N} + \frac{\bar{\gamma}^{2k} - \left(1 - \eta \mu(1 - \frac{\eta L}{2})\right)^k}{\bar{\gamma}^2 - 1 + \eta \mu(1 - \frac{\eta L}{2})} \cdot \frac{4L^2 \bar{\gamma}^2}{N} \mathbb{E}\|x^{(0)}\|^2 \end{split}$$

\mathcal{W}_2 Distance between the iterates and the Gibbs distribution

Bounds on the W_2 distance between the Euler-Maruyama discretization x_k of the overdamped Langevin diffusion and Gibbs distribution π has been established in the literature¹

¹Dalalyan, A.S. and Karagulyan, A.G. (2019). User-friendly guarantees for the Langevin Monte Carlo with inaccurate gradient. Stochastic Processes and their Applications. 129(12), 5278-5311

\mathcal{W}_2 Distance between the iterates and the Gibbs distribution

Bounds on the W_2 distance between the Euler-Maruyama discretization x_k of the overdamped Langevin diffusion and Gibbs distribution π has been established in the literature¹

Lemma 6
For any
$$\eta \in \left(0, \frac{2N}{L+\mu}\right]$$
, we have
 $\mathcal{W}_2(\mathcal{L}(x_k), \pi) \leq (1 - \mu n)^k \mathcal{W}_2(\mathcal{L}(x_0), \pi) + \frac{1.65L}{\mu} \sqrt{\eta dN^{-1}}$

¹Dalalyan, A.S. and Karagulyan, A.G. (2019). User-friendly guarantees for the Langevin Monte Carlo with inaccurate gradient. Stochastic Processes and their Applications. 129(12), 5278-5311

 We introduce the following algorithm which we call decentralized stochastic gradient Hamiltonian Monte Carlo (DE-SGHMC): For each agent i = 1, 2, · · · , N,

00000

$$v_{i}^{(k+1)} = v_{i}^{(k)} - \eta \left[\gamma v_{i}^{(k)} + \tilde{\nabla} f_{i} \left(x_{i}^{(k)} \right) \right] + \sqrt{2\gamma \eta} w_{i}^{(k+1)}$$
(20)

Decentralized SGHLMC

$$x_i^{(k+1)} = \sum_{j \in \Omega_i} W_{ij} x_j^{(k)} + \eta v_i^{(k+1)}$$
(21)

where $w_i^{(k+1)}$ is the Gaussian noise and $\tilde{\nabla} f_i$ is the noisy gradient introduced just as before for DE-SGLD.

Conclusion

Decentralized SGLD Decentralized SGHLMC Numerical Experiments 00000

Decentralized SGHLMC (cont.)

• Let us define the average at k-th iteration as:

$$\bar{x}^{(k)} = \frac{1}{N} \sum_{i=1}^{N} x_i^{(k)}, \quad \bar{v}^{(k)} = \frac{1}{N} \sum_{i=1}^{N} v_i^{(k)}$$
 (22)

Conclusio O

Decentralized SGHLMC (cont.)

۲

• Let us define the average at k-th iteration as:

$$\bar{x}^{(k)} = \frac{1}{N} \sum_{i=1}^{N} x_i^{(k)}, \quad \bar{v}^{(k)} = \frac{1}{N} \sum_{i=1}^{N} v_i^{(k)}$$
 (22)

 $\bullet\,$ Since ${\mathcal W}$ is doubly stochastic, we get

$$\bar{v}^{(k+1)} = \bar{v}^{k} - \eta \gamma \bar{v}^{(k)} - \eta \frac{1}{N} \sum_{i=1}^{N} \nabla f_{i} \left(x_{i}^{(k)} \right) - \eta \bar{\xi}^{(k+1)} + \sqrt{2\gamma \eta} \bar{w}^{(k+1)}$$
$$\bar{x}^{(k+1)} = \bar{x}^{(k)} + \eta \bar{v}^{(k+1)}$$
And, $\bar{\xi}^{(k+1)} = \frac{1}{N} \sum_{i=1}^{N} \xi_{i}^{(k+1)}$,
 $\bar{w}^{(k+1)} = \frac{1}{N} \sum_{i=1}^{N} w_{i}^{(k+1)}$

イロト イボト イヨト イヨト

Decentralized SGHLMC (cont.)

Theorem 7

Assume $\mathbb{E}\|x^{(0)}\|^2$ and $\mathbb{E}\|v^{(0)}\|^2$ are finite. Let η be given satisfying

$$\eta^2 \in \left(0, \frac{1 + \lambda_N^W}{2(L + \mu)}\right) \tag{23}$$

Then, we can choose $\gamma \in (0, \frac{1}{\eta}]$ such that $\beta = 1 - \gamma \eta \in [0, 1)$ and satisfies. the inequality

$$\beta \leq \bar{\beta} = \min\left(\frac{1 + \lambda_N^W - 4\eta^2 \mu}{4}, \eta^3 \sqrt{c_1 \mu^3 \frac{(1 + \lambda_N^W)}{64}}\right)$$
(24)

where

$$c_1 = rac{1}{2} rac{\eta^2 \mu}{\left(1+eta
ight) + \left(1-eta
ight) \left(rac{\eta^2 \mu}{1-\lambda_N^W+\eta^2 L}
ight)}$$

Numerical Experiments

Decentralized SGHLMC (cont.)

Theorem 7 (cont.)

For every k, DE-SGHMC iterates $x_i^{(k)}$ given by (21) and their average $\bar{x}^{(k)}$ satisfy

$$\begin{aligned} \mathcal{W}_{2}\left(\mathcal{L}\left(\bar{x}^{(k)}\right),\pi\right) \\ &\leq (1-\mu\eta^{2})^{k}\left(\left(\mathbb{E}\|\bar{x}^{(0)}-x_{*}\|^{2}\right)^{1/2}+\sqrt{2\mu^{-1}}dN^{-1}\right) \\ &+ \left(\bar{\gamma}^{2}\frac{\left(1-\eta^{2}\mu\left(1-\frac{\eta^{2}L}{2}\right)\right)^{k}-\bar{\gamma}^{2k}}{\left(1-\eta^{2}\mu\left(1-\frac{\eta^{2}L}{2}\right)\right)-\bar{\gamma}^{2}}\right)^{1/2}\frac{2L}{\sqrt{N}}\left(\mathbb{E}\|x^{(0)}\|^{2}\right)^{1/2}+\eta E_{4} \end{aligned}$$

$$(25)$$
with $E_{4} = \mathcal{O}(1)$

Numerical Experiments

Decentralized SGHLMC (cont.)

Theorem 7 (cont.)

Furthermore,

$$\frac{1}{N} \sum_{1}^{N} W_{2} \left(\mathcal{L} \left(x^{(k)} \right), \pi \right) \\
\leq (1 - \mu \eta^{2})^{k} \left(\left(\mathbb{E} \| \bar{x}^{(0)} - x_{*} \|^{2} \right)^{1/2} + \sqrt{2\mu^{-1}} dN^{-1} \right) + \frac{\sqrt{2} \bar{\gamma}^{k}}{\sqrt{N}} \left(\mathbb{E} \| x^{(0)} \|^{2} \right) \\
+ \left(\frac{\left(1 - \eta^{2} \mu \left(1 - \frac{\eta^{2} L}{2} \right) \right)^{k} - \bar{\gamma}^{2k}}{\left(1 - \eta^{2} \mu \left(1 - \frac{\eta^{2} L}{2} \right) \right) - \bar{\gamma}^{2}} \right)^{1/2} \frac{2L \bar{\gamma}}{\sqrt{N}} \left(\mathbb{E} \| x^{(0)} \|^{2} \right)^{1/2} + \eta E_{5} \\$$
(26)

with $E_5 = \mathcal{O}(1)$, and $\beta = \mathcal{O}(\eta^4)$ where $\mathcal{O}(.)$ hides the constants that depend on d, μ, L, σ , and $\bar{\gamma}$ and N

• We observe that

$$\lim_{k\to\infty}\sup\mathcal{W}_2\left(\mathcal{L}\left(\bar{x}^{(k)}\right),\pi\right)=\mathcal{O}(n)$$

where $\mathcal{O}(.)$ hides other constants $(d, \mu, L, \sigma, N, \text{ and } \bar{\gamma})$

Discussions

We observe that

$$\lim_{k\to\infty}\sup\mathcal{W}_2\left(\mathcal{L}\left(\bar{x}^{(k)}\right),\pi\right)=\mathcal{O}(n)$$

where $\mathcal{O}(.)$ hides other constants $(d, \mu, L, \sigma, N, \text{ and } \bar{\gamma})$

• With the iteration K, we can choose $\eta = \sqrt{\frac{c\log\sqrt{K}}{\mu K}}$ for a constant c>1

Discussions

We observe that

$$\lim_{k\to\infty}\sup\mathcal{W}_2\left(\mathcal{L}\left(\bar{x}^{(k)}\right),\pi\right)=\mathcal{O}(n)$$

where $\mathcal{O}(.)$ hides other constants $(d, \mu, L, \sigma, N, \text{ and } \bar{\gamma})$

- With the iteration K, we can choose $\eta = \sqrt{\frac{c \log \sqrt{K}}{\mu K}}$ for a constant c>1
- Consequently,

$$\mathcal{W}_2\left(\mathcal{L}\left(\bar{x}^{(2k)}\right),\pi\right) = \mathcal{O}\left(\sqrt{\frac{\sqrt{\log K}}{\sqrt{K}}}\right)$$

where the last $\mathcal{O}(\cdot)$ term hides constants that depends on $x^{(0)},v^{(0)},d,\mu,L,\sigma,\bar{\gamma},N$ and c

Numerical Experiments

Numerical Experiments

• We present our numerical results to validate our theory and investigate the performance of DE-SGLD and DE-SGHMC

Numerical Experiments

- We present our numerical results to validate our theory and investigate the performance of DE-SGLD and DE-SGHMC
- We mainly focus on Bayesian linear regression and Bayesian logistic regression
Numerical Experiments

- We present our numerical results to validate our theory and investigate the performance of DE-SGLD and DE-SGHMC
- We mainly focus on Bayesian linear regression and Bayesian logistic regression
- We consider mainly three network architectures
 - Fully-connected
 - Circular
 - A disconnected

Decentralized SGHLMC

Numerical Experiments

Conclusion 0

Network Architecture

35 / 44

Experiment Design

Data

$$\delta_j \sim \mathcal{N}(0, \xi^2), \ X_j \sim \mathcal{N}(0, I), \ y_j = x^T X_j + \delta_j$$

where δ_j are i.i.d scalars with $\xi = 1, x \in \mathbb{R}^2$ and the prior distribution of $x \sim \mathcal{N}(0, \lambda I)$ with $\lambda = 10$

Experiment Design

Data

,

$$\delta_j \sim \mathcal{N}(0, \xi^2), \quad X_j \sim \mathcal{N}(0, I), \quad y_j = x^T X_j + \delta_j$$

where δ_j are i.i.d scalars with $\xi = 1, x \in \mathbb{R}^2$ and the prior distribution of $x \sim \mathcal{N}(0, \lambda I)$ with $\lambda = 10$

• For Bayesian Linear regression we have the posterior distribution

$$\pi(x) \sim \mathcal{N}(m, V), \quad m = (\Sigma^{-1} + X^T X / \xi^2)^{-1} (X^T y / \xi^2)$$

$$V = (X^T X / \xi^2 + \Sigma^{-1})^{-1}$$

where $\Sigma = \lambda I$ is the covariance matrix of the prior distribution of x, $X = [X_1^T, X_2^T, X_3^T, \cdots]^T$ and $Y = [y_1, y_2, \cdots]^T$ are the matrices containing all the data points.

Experiment Design

Data

,

$$\delta_j \sim \mathcal{N}(0, \xi^2), \quad X_j \sim \mathcal{N}(0, I), \quad y_j = x^T X_j + \delta_j$$

where δ_j are i.i.d scalars with $\xi = 1, x \in \mathbb{R}^2$ and the prior distribution of $x \sim \mathcal{N}(0, \lambda I)$ with $\lambda = 10$

• For Bayesian Linear regression we have the posterior distribution

$$\pi(x) \sim \mathcal{N}(m, V), \quad m = (\Sigma^{-1} + X^T X / \xi^2)^{-1} (X^T y / \xi^2)$$

$$V = (X^T X / \xi^2 + \Sigma^{-1})^{-1}$$

where $\Sigma = \lambda I$ is the covariance matrix of the prior distribution of x, $X = [X_1^T, X_2^T, X_3^T, \cdots]^T$ and $Y = [y_1, y_2, \cdots]^T$ are the matrices containing all the data points.

• We simulate 5000 data points and partition them randomly among N = 100 agents.

Experiment Design (cont.)

• Each agent has access to its own data but not to other agents' data.

- Each agent has access to its own data but not to other agents' data.
 - The posterior distribution $\pi(x) \propto e^{-f(x)}$ is of the form $f(x) = \sum_{i=1}^{N} f_i(x)$ with

$$f_i(x) = -\sum_{j=1}^{n_i} \log p(y_j^i | x, X_j^i) - \frac{1}{N} \log p(x)$$
$$= \sum_{j=1}^{n_i} (y_j^i - x^T X_j^i) + \frac{1}{2\lambda N} ||x||^2$$

where,

$$p(y_j^i|x, X_j^i) = rac{1}{\sqrt{2\pi\xi^2}} e^{-rac{1}{2\xi^2}(y_j^i - x^T X_j^i)^2}, \ \ p(x) \propto e^{-rac{1}{2\lambda}} \|x\|^2$$

The Article

Decentralized SGLD

Decentralized SGHLMC

Numerical Experiments

Results (DE-SGLD Method)

• Tune the step size $\eta = 0.009$ and consider the deterministic gradient (i.e., $\sigma = 0$)

The Articl

Decentralized SGLD

Decentralized SGHLMC

Numerical Experiments

Results (DE-SGLD Method)

- Tune the step size $\eta = 0.009$ and consider the deterministic gradient (i.e., $\sigma = 0$)
- It follows that $x_i^{(k)} \sim \mathcal{N}(m_i^k, \Sigma_i^{(k)})$ for some mean vector m_i^k and covariance matrix $\Sigma_i^{(k)}$

The Articl

Decentralized SGLD

Decentralized SGHLMC

Numerical Experiments

Results (DE-SGLD Method)

- Tune the step size $\eta = 0.009$ and consider the deterministic gradient (i.e., $\sigma = 0$)
- It follows that $x_i^{(k)} \sim \mathcal{N}(m_i^k, \Sigma_i^{(k)})$ for some mean vector m_i^k and covariance matrix $\Sigma_i^{(k)}$
- Based on 100 runs we estimate m_i^k and $\Sigma_i^{(k)}$ and compute W_2 distance w.r.t $\pi(x) \sim \mathcal{N}(m, V)$

The Article

Decentralized SGLD

Decentralized SGHLMC

Numerical Experiments

Results (DE-SGLD Method)

- Tune the step size $\eta = 0.009$ and consider the deterministic gradient (i.e., $\sigma = 0$)
- It follows that $x_i^{(k)} \sim \mathcal{N}(m_i^k, \Sigma_i^{(k)})$ for some mean vector m_i^k and covariance matrix $\Sigma_i^{(k)}$
- Based on 100 runs we estimate m_i^k and $\Sigma_i^{(k)}$ and compute W_2 distance w.r.t $\pi(x) \sim \mathcal{N}(m, V)$
- We also com-

pute the average $\bar{x}_i^{(k)}$ over the iterations and obtain the following

The Article

Decentralized SGLD

Decentralized SGHLMC

Numerical Experiments

Results (DE-SGLD Method)

- Tune the step size $\eta = 0.009$ and consider the deterministic gradient (i.e., $\sigma = 0$)
- It follows that $x_i^{(k)} \sim \mathcal{N}(m_i^k, \Sigma_i^{(k)})$ for some mean vector m_i^k and covariance matrix $\Sigma_i^{(k)}$
- Based on 100 runs we estimate m_i^k and $\Sigma_i^{(k)}$ and compute W_2 distance w.r.t $\pi(x) \sim \mathcal{N}(m, V)$
- We also com-

pute the average $\bar{x}_i^{(k)}$ over the iterations and obtain the following

Figure 2: Performance of DE-SGLD for Bayesian regression on different network structures with N=100 agents. The results of the first 4 agents x_i^k and the node averages $\bar{x}^k = \sum_{i=1}^{N} x_i^{(k)}/N$ are reported.

graph

• We investigate the DE-SGHMC method on the same data set with the same three network structure

Results (DE-SGHMC)

- We investigate the DE-SGHMC method on the same data set with the same three network structure
- The stepsize and the friction coefficient are tuned to $\eta = 0.1$ and $\gamma = 7$, respectively. And we obtain the following graph

Conclusion

Results (DE-SGHMC)

Decentralized SGLD

• We investigate the DE-SGHMC method on the same data set with the same three network structure

Decentralized SGHLMC

• The stepsize and the friction coefficient are tuned to $\eta = 0.1$ and $\gamma = 7$, respectively. And we obtain the following graph

Figure 3: Performance of DE-SGHMC method for Bayesian regression on different network structures. The stepsize η and the friction coefficient γ are tuned to the dataset where we take $\eta = 0.1$ and $\gamma = 7$.

Numerical Experiments

0000000000

Conclusion

Results

• we investigate the effect of changing stepsize, batch size and the network structure on the speed of convergence where we stick to the DESGLD method for this set of experiments

Results

- we investigate the effect of changing stepsize, batch size and the network structure on the speed of convergence where we stick to the DESGLD method for this set of experiments
- We measure the 2-Wasserstein distance to the target π with a similar approach as before by fitting a Gaussian distribution $\mathcal{N}(m_i^{(k)}, \Sigma_i^{(k)})$ to the empirical distribution of $x_i^{(k)}$ over 100 independent runs.

- (a) Batch size
- (b) Stepsize (c) Network structure Figure 4: Performance of DE-SGLD method for Bayesian regression under different settings.
- Figures are based on one randomly picked agent. The v-axis is presented in a logarithmic scale in (a) and (b).
- Both Figure 4(a) and Figure 4(b) are based on the fully-connected network architecture. In Figure 4(a), we fixx the stepsize to $\eta = 0.009$ and vary the batch sizes (the number of data points sampled with replacement to estimate the gradient)

- (a) Batch size
- (c) Network structure (b) Stepsize Figure 4: Performance of DE-SGLD method for Bayesian regression under different settings.

41 / 44

- Figures are based on one randomly picked agent. The y-axis is presented in a logarithmic scale in (a) and (b).
- Both Figure 4(a) and Figure 4(b) are based on the fully-connected network architecture. In Figure 4(a), we fixx the stepsize to $\eta = 0.009$ and vary the batch sizes (the number of data points sampled with replacement to estimate the gradient)
- We conclude that different batch sizes affect the asymptotic error the iterates have with respect to the 2-Wasserstein distance

- Figure 4: Performance of DE-SGLD method for Bayesian regression under different settings. Figures are based on one randomly picked agent. The y-axis is presented in a logarithmic scale in (a) and (b).
 - In Figure 4(b), we used stochastic gradients with batch size
 b = 25 while we varied the stepsize
 - The result clearly demonstrates the trade-off between the convergence rate and the asymptotic accuracy; for larger stepsize the algorithm converges faster to an asymptotic error region but the accuracy becomes worse as predicted by Theorem 1

-1.5

Iterations k

(a) Batch size

Iterations k

(b) Stepsize

100 200 300

- In Figure 4(c) we report the effect of network structure with a constant stepsize $\eta = 0.008$ and batch size b = 25 where we report the performance of a randomly picked agent.
- The fastest convergence is observed for the fully-connected network.

200

Iterations k

(c) Network structure

• We studied DE-SGLD and DE-SGHMC methods which allow scalable Bayesian inference for decentralized learning settings

The Article Decentralized SGLD Decentralized SGHLMC Numerical Experiments Conclusion Conclusion Conclusion • •

- We studied DE-SGLD and DE-SGHMC methods which allow scalable Bayesian inference for decentralized learning settings
- For both methods, we show that the distribution of the iterate $x^{(k)}$ of node *i* converges linearly (in *k*) to a neighborhood of the target distribution in the 2-Wasserstein metric when the target density $\pi(x) \propto e^{-f(x)}$ is strongly log-concave (i.e. f is strongly convex) and f is smooth

Conclusion

The Article

- We studied DE-SGLD and DE-SGHMC methods which allow scalable Bayesian inference for decentralized learning settings
- For both methods, we show that the distribution of the iterate $x^{(k)}$ of node *i* converges linearly (in *k*) to a neighborhood of the target distribution in the 2-Wasserstein metric when the target density $\pi(x) \propto e^{-f(x)}$ is strongly log-concave (i.e. f is strongly convex) and f is smooth
- Our results are non-asymptotic and provide performance bounds for any finite *k*.
- We also illustrated the efficiency of our methods on the Bayesian linear regression and Bayesian logistic regression problems