The Heavy-Tail Phenomenon in Decentralized Stochastic Gradient Descent

Mohammad Rafiqul Islam

Florida State University

November 20, 2023

- 2 [A Tail-Index Analysis of SGD in Deep Learning](#page-12-0)
- 3 [The Heavy-Tail Phenomenon in SGD](#page-37-0)
- 4 [Heavy-Tail Phenomenon in Decentralized SGD](#page-58-0)

5 [Future Research](#page-100-0)

[Conclusion](#page-106-0)

The learning or training of the neural network involves a very well-known optimization problem:

$$
\min_{x \in \mathbb{R}^d} F(x) := \mathbb{E}_{z \sim \mathcal{D}} \left[f(x, z) \right] \tag{1}
$$

where

 $z \in \mathbb{R}^p$ denotes a random data point,

The learning or training of the neural network involves a very well-known optimization problem:

$$
\min_{x \in \mathbb{R}^d} F(x) := \mathbb{E}_{z \sim \mathcal{D}} \left[f(x, z) \right] \tag{1}
$$

where

- $z \in \mathbb{R}^p$ denotes a random data point,
- \mathcal{D} is a probability distribution on \mathbb{R}^p that denotes the law of the data points,

The learning or training of the neural network involves a very well-known optimization problem:

$$
\min_{x \in \mathbb{R}^d} F(x) := \mathbb{E}_{z \sim \mathcal{D}} \left[f(x, z) \right] \tag{1}
$$

where

- $z \in \mathbb{R}^p$ denotes a random data point,
- \mathcal{D} is a probability distribution on \mathbb{R}^p that denotes the law of the data points,
- $x \in \mathbb{R}^d$ denotes the parameters of the neural network to be optimized,

The learning or training of the neural network involves a very well-known optimization problem:

$$
\min_{x \in \mathbb{R}^d} F(x) := \mathbb{E}_{z \sim \mathcal{D}} \left[f(x, z) \right] \tag{1}
$$

where

- $z \in \mathbb{R}^p$ denotes a random data point,
- \mathcal{D} is a probability distribution on \mathbb{R}^p that denotes the law of the data points,
- $x \in \mathbb{R}^d$ denotes the parameters of the neural network to be optimized,
- $f: \mathbb{R}^d \times \mathbb{R}^p \to \mathbb{R}_+$ denotes a measurable cost function, which may be convex or non-convex in x .

Stochastic Gradient Descent (SGD) Method

If we have a training dataset, $S = \{z_1, z_2, \dots, z_n\}$ with n i.i.d observations, i.e., $z_i \sim_{i.i.d} \mathcal{D}$ for $i = 1, 2, \cdots, n$

Stochastic Gradient Descent (SGD) Method

If we have a training dataset, $S = \{z_1, z_2, \dots, z_n\}$ with n i.i.d observations, i.e., $z_i \sim_{i.i.d} \mathcal{D}$ for $i = 1, 2, \cdots, n$

Empirical risk minimization problem:

$$
\min_{x \in \mathbb{R}^d} f(x, S) := \frac{1}{n} \sum_{i=1}^n f^{(i)}(x) \tag{2}
$$

Stochastic Gradient Descent (SGD) Method

If we have a training dataset, $S = \{z_1, z_2, \dots, z_n\}$ with n i.i.d observations, i.e., $z_i \sim_{i.i.d} \mathcal{D}$ for $i = 1, 2, \cdots, n$

Empirical risk minimization problem:

$$
\min_{x \in \mathbb{R}^d} f(x, S) := \frac{1}{n} \sum_{i=1}^n f^{(i)}(x) \tag{2}
$$

 $f^{(i)}$ denotes the cost or (instantaneous) loss function that is contributed by the data point z_i for $i \in \{1, 2, 3, \dots, n\}.$

Stochastic Gradient Descent (SGD) Method

If we have a training dataset, $S = \{z_1, z_2, \dots, z_n\}$ with n i.i.d observations, i.e., $z_i \sim_{i.i.d} \mathcal{D}$ for $i = 1, 2, \cdots, n$

Empirical risk minimization problem:

$$
\min_{x \in \mathbb{R}^d} f(x, S) := \frac{1}{n} \sum_{i=1}^n f^{(i)}(x) \tag{2}
$$

- $f^{(i)}$ denotes the cost or (instantaneous) loss function that is contributed by the data point z_i for $i \in \{1, 2, 3, \dots, n\}.$
- The SGD iteration: $x_k = x_{k-1} \eta \nabla \tilde{f}_k(x_{k-1})$

Stochastic Gradient Descent (SGD) Method

If we have a training dataset, $S = \{z_1, z_2, \dots, z_n\}$ with n i.i.d observations, i.e., $z_i \sim_{i.i.d} \mathcal{D}$ for $i = 1, 2, \cdots, n$

Empirical risk minimization problem:

$$
\min_{x \in \mathbb{R}^d} f(x, S) := \frac{1}{n} \sum_{i=1}^n f^{(i)}(x) \tag{2}
$$

- $f^{(i)}$ denotes the cost or (instantaneous) loss function that is contributed by the data point z_i for $i \in \{1, 2, 3, \dots, n\}$.
- The SGD iteration: $x_k = x_{k-1} \eta \nabla \tilde{f}_k(x_{k-1})$
- $\bullet \nabla \tilde{f}_k$ denotes the stochastic gradient at iteration k, which is given as

$$
\nabla \tilde{f}_k(x) \triangleq \nabla \tilde{f}_{\Omega_k}(x) \triangleq \frac{1}{b} \sum_{i \in \Omega_k} \nabla f^{(i)}(x) \tag{3}
$$

Stochastic Gradient Descent (SGD) Method

If we have a training dataset, $S = \{z_1, z_2, \dots, z_n\}$ with n i.i.d observations, i.e., $z_i \sim_{i.i.d} \mathcal{D}$ for $i = 1, 2, \cdots, n$

Empirical risk minimization problem:

$$
\min_{x \in \mathbb{R}^d} f(x, S) := \frac{1}{n} \sum_{i=1}^n f^{(i)}(x) \tag{2}
$$

- $f^{(i)}$ denotes the cost or (instantaneous) loss function that is contributed by the data point z_i for $i \in \{1, 2, 3, \dots, n\}$.
- The SGD iteration: $x_k = x_{k-1} \eta \nabla f_k(x_{k-1})$
- $\bullet \nabla \tilde{f}_k$ denotes the stochastic gradient at iteration k, which is given as

$$
\nabla \tilde{f}_k(x) \triangleq \nabla \tilde{f}_{\Omega_k}(x) \triangleq \frac{1}{b} \sum_{i \in \Omega_k} \nabla f^{(i)}(x) \tag{3}
$$

• Stochasticity: $\Omega_k \subset \{1, 2, 3, \cdots, n\}$ and $b = |\Omega_k|$

• Stochastic gradient noise (GN): $U_k(\mathbf{x}) \triangleq \nabla \tilde{f}_k(\mathbf{x}) - \nabla f_k(\mathbf{x})$

- Stochastic gradient noise (GN): $U_k(\mathbf{x}) \triangleq \nabla \tilde{f}_k(\mathbf{x}) \nabla f_k(\mathbf{x})$
- \bullet If b is large enough, then by Central Limit Theorem

$$
U_k(\mathbf{x}) \sim \mathcal{N}(0, \sigma^2 \mathbf{I})
$$
\n(4)

- Stochastic gradient noise (GN): $U_k(\mathbf{x}) \triangleq \nabla \tilde{f}_k(\mathbf{x}) \nabla f_k(\mathbf{x})$
- \bullet If b is large enough, then by Central Limit Theorem

$$
U_k(\mathbf{x}) \sim \mathcal{N}(0, \sigma^2 \mathbf{I})
$$
\n(4)

Under this assumption, the SGD can be written as follows:

$$
\mathbf{x}_{k} = \mathbf{x}_{k-1} - \eta \nabla f(\mathbf{x}_{k-1}) + \sqrt{\eta} \sqrt{\eta \sigma^{2}} Z_{k-1}
$$
(5)

where \mathbf{Z}_k denotes a standard normal random variable in \mathbb{R}^d .

- Stochastic gradient noise (GN): $U_k(\mathbf{x}) \triangleq \nabla \tilde{f}_k(\mathbf{x}) \nabla f_k(\mathbf{x})$
- \bullet If b is large enough, then by Central Limit Theorem

$$
U_k(\mathbf{x}) \sim \mathcal{N}(0, \sigma^2 \mathbf{I})
$$
\n(4)

Under this assumption, the SGD can be written as follows:

$$
\mathbf{x}_k = \mathbf{x}_{k-1} - \eta \nabla f(\mathbf{x}_{k-1}) + \sqrt{\eta} \sqrt{\eta \sigma^2} Z_{k-1}
$$
(5)

where \mathbf{Z}_k denotes a standard normal random variable in \mathbb{R}^d .

• If η is small enough then the continuous version of [\(5\)](#page-12-1) is the following stochastic differential equation (SDE)

$$
d\mathbf{x}_t = -\nabla f(\mathbf{x}_t)dt + \sqrt{\eta \sigma^2} d\mathbf{B}_t
$$
 (6)

where B_t denotes the standard Brownian motion.

Equation [\(6\)](#page-12-2) is known as the Langevin diffusion

- Equation [\(6\)](#page-12-2) is known as the Langevin diffusion
- \bullet Under mild regularity assumptions on f, one can show that the Markov process $\{x_t\}_{t>0}$ is ergodic with its unique invariant measure, whose density is proportional to

$$
e^{-\frac{f(x)}{\eta\sigma^2}}
$$

- Equation [\(6\)](#page-12-2) is known as the Langevin diffusion
- \bullet Under mild regularity assumptions on f, one can show that the Markov process $\{x_t\}_{t>0}$ is ergodic with its unique invariant measure, whose density is proportional to

$$
e^{-\frac{f(x)}{\eta\sigma^2}}
$$

Based on this observation, Jastrzębski et al.¹ focused on the relation between this invariant measure and the algorithm parameters, η and b as a function of σ^2 .

¹S. Jastrzebski, Z. Kenton, D. Arpit, N. Ballas, A. Fischer, Y. Bengio, and A. Storkey. Three factors influencing minima in SGD. arXiv preprint arXiv:1711.04623, 2017.

- Equation [\(6\)](#page-12-2) is known as the Langevin diffusion
- \bullet Under mild regularity assumptions on f, one can show that the Markov process $\{x_t\}_{t>0}$ is ergodic with its unique invariant measure, whose density is proportional to

$$
e^{-\frac{f(x)}{\eta\sigma^2}}
$$

- Based on this observation, Jastrzębski et al.¹ focused on the relation between this invariant measure and the algorithm parameters, η and b as a function of σ^2 .
- Their conclusion: ratio η/b is the control parameter that determines the width of the minima found by SGD

¹S. Jastrzebski, Z. Kenton, D. Arpit, N. Ballas, A. Fischer, Y. Bengio, and A. Storkey. Three factors influencing minima in SGD. arXiv preprint arXiv:1711.04623, 2017.

Wide Minima Folklore

 \bullet They revisited the famous wide-minima folklore 2

Figure 1: Hypothetical Loss function

"Among the minima found by SGD, the wider it is, the better it performs on the test set"

²Sepp Hochreiter and Jürgen Schmidhuber. Flat minima. Neural computation, 9(1):1–42, 1997.

Empirical issues: Gaussianity assumption

Figure 2: (a) The histogram of the norm of the gradient noises computed with AlexNet on Cifar10. (b) and (c) the histograms of the norms of (scaled) Guassian and α -stable random variables.

 2 AlexNet is a convolutional neural network that is 8 layers deep

Theoretical issues: Complexity and wide minima

Large number of iterations required to converge to an invariant measure^a: No. of iterations $\approx \mathcal{O}(e^d)$

Theoretical issues: Complexity and wide minima

- Large number of iterations required to converge to an invariant measure^a: No. of iterations $\approx \mathcal{O}(e^d)$
- Transition time $\approx e^H \times poly(|m_1|)$

Theoretical issues: Complexity and wide minima

- Large number of iterations required to converge to an invariant measure^a: No. of iterations $\approx \mathcal{O}(e^d)$
- Transition time $\approx e^H \times poly(|m_1|)$
- Therefore, SGD prefers wide minima within a considerably small number of iterations cannot be explained using the asymptotic distribution of the SDE given in [\(6\)](#page-12-2).

Figure 3: An objective with two local minima m_1, m_2 separated by a local maxima at $s_1 = 0$

^aP. Xu, J. Chen, D. Zou, and Q. Gu. Global convergence of Langevin dynamics based algorithms for nonconvex optimization. Advances in Neural Information Processing Systems, 31, 2018.

Lévy-Driven SDE Assumptions

• If the Gaussian assumption is not adequate, by generalized CLT, one can model stochastic gradient noise by:

$$
[U_k(\mathbf{x})]_i \sim \mathcal{S}\alpha \mathcal{S}(\sigma(\mathbf{x})), \ \forall \ i = 1, 2, \cdots, n \tag{7}
$$

where $[v]_i$ denotes the *i*th component of a vector *v*

Lévy-Driven SDE Assumptions

• If the Gaussian assumption is not adequate, by generalized CLT, one can model stochastic gradient noise by:

$$
[U_k(\mathbf{x})]_i \sim \mathcal{S}\alpha \mathcal{S}(\sigma(\mathbf{x})), \ \forall \ i = 1, 2, \cdots, n \tag{7}
$$

where $[v]_i$ denotes the *i*th component of a vector *v*

• Based on the assumption above, [\(7\)](#page-25-1), we can rewrite the SGD recursion as follows:

$$
\mathbf{x}_{k} = \mathbf{x}_{k-1} - \eta \nabla f(\mathbf{x}_{k-1}) + \eta^{\frac{1}{\sigma}} \left(\eta^{\frac{\alpha-1}{\alpha}} \sigma\right) S_{k-1}
$$
(8)

where $\mathbf{S}_k \in \mathbb{R}^d$ is a random vector such that $[S_k]_i \sim \mathcal{S} \alpha \mathcal{S}(1)$.

Lévy-Driven SDE Assumptions

• If the Gaussian assumption is not adequate, by generalized CLT, one can model stochastic gradient noise by:

$$
[U_k(\mathbf{x})]_i \sim \mathcal{S}\alpha \mathcal{S}(\sigma(\mathbf{x})), \ \forall \ i = 1, 2, \cdots, n \tag{7}
$$

where $[v]_i$ denotes the *i*th component of a vector v

• Based on the assumption above, [\(7\)](#page-25-1), we can rewrite the SGD recursion as follows:

$$
\mathbf{x}_{k} = \mathbf{x}_{k-1} - \eta \nabla f(\mathbf{x}_{k-1}) + \eta^{\frac{1}{\sigma}} \left(\eta^{\frac{\alpha-1}{\alpha}} \sigma\right) S_{k-1}
$$
(8)

where $\mathbf{S}_k \in \mathbb{R}^d$ is a random vector such that $[S_k]_i \sim \mathcal{S} \alpha \mathcal{S}(1)$.

• If η is small enough then the continuous-time limit of this eq. [\(8\)](#page-25-2) is the following SDE driven by an α -stable Lévy process:

$$
d\mathbf{x}_t = -\nabla f(\mathbf{x}_t)dt + \eta^{\frac{\alpha - 1}{\alpha}} \sigma d\mathbf{L}_t^{\alpha}
$$
\n(9)

where \mathbf{L}^{α}_t denotes the d-dimensional α -stable Lévy motion

α -stable distribution

 $\bullet X \sim S\alpha S(\sigma)$ if its characteristic function is

$$
\mathbb{E}\left[e^{iuX}\right] = e^{-\sigma^{\alpha}|u|^{\alpha}} \text{ for } u \in \mathbb{R}
$$

d−dimensional version:

$$
\mathbb{E}\left[e^{i\langle u,X\rangle}\right] = e^{-\sigma^{\alpha}||u||_2^{\alpha}} \text{ for } u \in \mathbb{R}^d
$$

 $\sigma > 0$: scale parameter measures the spread of X around 0 & $\alpha \in (0, 2]$: determines the heaviness of the distribution tails.

Figure 4: α -stable Distribution

• For simplicity of the presentation we rewrite equation [\(9\)](#page-25-3) for $d = 1$ case (Multidimensional case³)

$$
d\mathbf{x}_t^\epsilon = -\nabla f(\mathbf{x}_t^\epsilon)dt + \epsilon d\mathbf{L}_t^\alpha \tag{10}
$$

for $t \geq 0$, started from the initial point $\mathbf{x}_0 \in \mathbb{R}$, $\epsilon \geq 0$ is a parameter and f is a non-convex objective with $r > 2$ local minima.

³P. Imkeller, I. Pavlyukevich, and M. Stauch. First exit times of non-linear dynamical systems in \mathbb{R}^d perturbed by multifractal Lévy noise. Journal of Statistical Physics, 141:94–119, 2010a

• For simplicity of the presentation we rewrite equation [\(9\)](#page-25-3) for $d = 1$ case (Multidimensional case³)

$$
d\mathbf{x}_t^{\epsilon} = -\nabla f(\mathbf{x}_t^{\epsilon})dt + \epsilon d\mathbf{L}_t^{\alpha}
$$
 (10)

for $t \geq 0$, started from the initial point $\mathbf{x}_0 \in \mathbb{R}$, $\epsilon \geq 0$ is a parameter and f is a non-convex objective with $r > 2$ local minima.

• For
$$
\epsilon = 0
$$
 gradient descent: $d\mathbf{x}_t^0 = -\nabla f(\mathbf{x}_t^0)dt$

³P. Imkeller, I. Pavlyukevich, and M. Stauch. First exit times of non-linear dynamical systems in \mathbb{R}^d perturbed by multifractal Lévy noise. Journal of Statistical Physics, 141:94–119, 2010a

• For simplicity of the presentation we rewrite equation [\(9\)](#page-25-3) for $d = 1$ case (Multidimensional case³)

$$
d\mathbf{x}_t^{\epsilon} = -\nabla f(\mathbf{x}_t^{\epsilon})dt + \epsilon d\mathbf{L}_t^{\alpha}
$$
 (10)

for $t > 0$, started from the initial point $\mathbf{x}_0 \in \mathbb{R}$, $\epsilon > 0$ is a parameter and f is a non-convex objective with $r > 2$ local minima.

- For $\epsilon = 0$ gradient descent: $d\mathbf{x}_t^0 = -\nabla f(\mathbf{x}_t^0) dt$
- When $\epsilon > 0$ these states become 'metastable', there is a positive probability for x_t^{ϵ} to transition from one basin to another.

³P. Imkeller, I. Pavlyukevich, and M. Stauch. First exit times of non-linear dynamical systems in \mathbb{R}^d perturbed by multifractal Lévy noise. Journal of Statistical Physics, 141:94–119, 2010a

When $\alpha = 2$ (i.e. Gaussianity assumption), the process x_t^{ϵ} requires to 'climb' the basin all the way up in order to transfer from one basin to another.

- When $\alpha = 2$ (i.e. Gaussianity assumption), the process x_t^{ϵ} requires to 'climb' the basin all the way up in order to transfer from one basin to another.
- But when $\alpha < 2$ the process can incur discontinuous jumps and do not need to cross the boundaries of the basin in order to transition to another one since it can directly jump.

- When $\alpha = 2$ (i.e. Gaussianity assumption), the process x_t^{ϵ} requires to 'climb' the basin all the way up in order to transfer from one basin to another.
- But when $\alpha < 2$ the process can incur discontinuous jumps and do not need to cross the boundaries of the basin in order to transition to another one since it can directly jump.
- Under some conditions⁴ on f, the process [\(10\)](#page-29-0) admits a stationary density.

⁴G. Samorodnitsky and M. Grigoriu. Tails of solutions of certain nonlinear stochastic differential equations driven by heavy tailed Lévy motions. Stochastic processes and their applications, 105(1):69–97, 2003.

Validation of the wide minima phenomenon: Setup

Assume that f is smooth with r local minima $\{m_i\}_{i=1}^r$ separated by $r - 1$ local maxima $\{s_i\}_{i=1}^{r-1}$, i.e.,

 $-\infty := s_0 < m_1 < s_1 < \cdots < s_{r-1} < m_r < s_r := \infty$

Theorem 1 (Umut Şimşekli, Levent Sagun, and Mert Gürbüzbalaban)

Under mild conditions, $x_{te^{-\alpha}}^{\epsilon} \to Y_m(t)$ as $\epsilon \to 0$, in the sense of finite-dimensional distributions, where $Y = (Y_m(t))_{t>0}$ is a continuous-time Markov chain on a state space $\{m_1, m_2, \cdots, m_r\}$ with the infinitesimal generator $Q = (q_{ij})_{i,j=1}^r$ with

$$
q_{ij} = \frac{1}{\alpha} \left| \frac{1}{|s_{j-1} - m_i|^{\alpha}} - \frac{1}{|s_j - m_i|^{\alpha}} \right|; \quad q_{ii} = -\sum_{j \neq i} q_{ij} \tag{11}
$$

This process admits a density π satisfying $Q^T \pi = 0$.
Validation of the wide minima phenomenon (cont.)

A consequence of this theorem: Equilibrium probabilities p_i are typically larger for "wide valleys". To see this, consider the case illustrated in Figure [\(3\)](#page-22-0) with $r = 2$ local minima $m_1 < s_1 = 0 < m_2$

- For this example, $m_2 > |m_1|$, and the second local minimum lies in a wider valley
- A simple computation reveals

$$
\pi_1 = \frac{|m_1|^{\alpha}}{|m_1|^{\alpha} + m_2^{\alpha}}; \ \pi_2 = \frac{|m_2|^{\alpha}}{|m_1|^{\alpha} + |m_2|^{\alpha}}
$$

We see $\pi_2 > \pi_1$, and $\frac{\pi_2}{\pi_1} = \left(\frac{m_2}{|m_1|}\right)$ $|m_1|$ $\big)^{\alpha}$ grows with an exponent α when the ratio $\frac{m_2}{|m_1|}$ of the width of the valleys **grows**
Rafiq Islam

Figure 5: An objective with two local minima m_1, m_2 separated by a local maxima at $s_1 = 0$

Where does the heavy-tail coming from?

 \bullet Consider the quadratic loss function f in a linear regression

$$
\min_{x \in \mathbb{R}^d} F(x) := \frac{1}{2} \mathbb{E}_{(a,y) \sim \mathcal{D}} \left[(a^T x - y)^2 \right] \tag{12}
$$

where the data (a, y) comes from an unknown distribution D with support $\mathbb{R}^d \times \mathbb{R}$.

Where does the heavy-tail coming from?

 \bullet Consider the quadratic loss function f in a linear regression

$$
\min_{x \in \mathbb{R}^d} F(x) := \frac{1}{2} \mathbb{E}_{(a,y) \sim \mathcal{D}} \left[(a^T x - y)^2 \right] \tag{12}
$$

where the data (a, y) comes from an unknown distribution D with support $\mathbb{R}^d \times \mathbb{R}$.

Assume we have access to i.i.d. samples (a_i, y_i) from the distribution \mathcal{D} where $\nabla f^{(i)}(x) = a_i(a_i^T x - y_i)$ is an unbiased estimator of the true gradient $\nabla F(x)$.

Where does the heavy-tail coming from?

 \bullet Consider the quadratic loss function f in a linear regression

$$
\min_{x \in \mathbb{R}^d} F(x) := \frac{1}{2} \mathbb{E}_{(a,y) \sim \mathcal{D}} \left[(a^T x - y)^2 \right] \tag{12}
$$

where the data (a, y) comes from an unknown distribution D with support $\mathbb{R}^d \times \mathbb{R}$.

- Assume we have access to i.i.d. samples (a_i, y_i) from the distribution \mathcal{D} where $\nabla f^{(i)}(x) = a_i(a_i^T x - y_i)$ is an unbiased estimator of the true gradient $\nabla F(x)$.
- \bullet In this settings, SGD with batch-size b leads to the iteration

$$
x_k = M_k x_{k-1} + q_k,\tag{13}
$$

with

$$
M_k := I - \frac{\eta}{b} H_k, \qquad H_k := \sum_{i \in \Omega_k} a_i a_i^T, \qquad q_k := \frac{\eta}{b} \sum_{i \in \Omega_k} (a_i y_i),
$$

where $\Omega_k := \{b(k-1) + 1, b(k-1) + 2, \dots, bk\}$

Assumption $(A1)$: a_i 's are i.i.d with a continuous distribution supported on \mathbb{R}^d with all the moments finite. All the moments of a_i are finite

- Assumption $(A1)$: a_i 's are i.i.d with a continuous distribution supported on \mathbb{R}^d with all the moments finite. All the moments of a_i are finite
- Assumption $(A2)$: y_i are i.i.d with a continuous density whose support is $\mathbb R$ with all the moments finite.

- Assumption $(A1)$: a_i 's are i.i.d with a continuous distribution supported on \mathbb{R}^d with all the moments finite. All the moments of a_i are finite
- Assumption $(A2)$: y_i are i.i.d with a continuous density whose support is $\mathbb R$ with all the moments finite.
- Let us define

$$
h(s) := \lim_{k \to \infty} \left(\mathbb{E} \| M_k M_{k-1} \cdots M_1 \|^{s} \right)^{\frac{1}{k}} \tag{14}
$$

which arises in stochastic matrix recursions⁵

⁵D. Buraczewski, E. Damek, Y. Guivarc'h, and S. Mentemeier. On multidimensional mandelbrot cascades. Journal of Difference Equations and Applications, 20(11):1523–1567, 2014.

Since $\mathbb{E} \|M_k\|^s < \infty$ for all k and $s > 0$, we have $h(s) < \infty$. Let us also define $\Pi_k := M_k M_{k-1} \cdots M_1$ and

$$
\rho := \lim_{k \to \infty} \frac{1}{2k} \log \left(\text{largest eigenvalue of } \Pi_k^T \Pi_k \right) \tag{15}
$$

The latter quantity is called the top Lyapunov exponent of the stochastic recursion.

Since $\mathbb{E} \|M_k\|^s < \infty$ for all k and $s > 0$, we have $h(s) < \infty$. Let us also define $\Pi_k := M_k M_{k-1} \cdots M_1$ and

$$
\rho := \lim_{k \to \infty} \frac{1}{2k} \log \left(\text{largest eigenvalue of } \Pi_k^T \Pi_k \right) \tag{15}
$$

The latter quantity is called the top Lyapunov exponent of the stochastic recursion.

Theorem 2 (Gürbüzbalaban, Simşekli, and $\text{Zhu}(2021)$)

Consider the SGD iterations [\(13\)](#page-37-1). If $\rho < 0$ and there exists a unique positive α such that $h(\alpha) = 1$, then [\(13\)](#page-37-1) admits a unique stationary solution x_{∞} and the SGD iterations converge to x_{∞} in distribution, where the distribution of x_{∞} satisfies

$$
\lim_{t \to \infty} t^{\alpha} \mathbb{P}(u^T x_{\infty} > t) = e_{\alpha}(u), \ u \in \mathbb{S}^{d-1}
$$
\n(16)

for some positive and continuous function e_{α} on \mathbb{S}^{d-1}

Rafiq Islam [The Heavy-Tail Phenomenon in Decentralized SGD](#page-0-0) November 20, 2023 18 / 44

In order to have a more explicit characterization of the tail-index, we will make the following additional assumption Assumption (A3): $a_i \sim \mathcal{N}(0, \sigma^2 I_d)$ are Gaussian for every *i*.

- In order to have a more explicit characterization of the tail-index, we will make the following additional assumption Assumption (A3): $a_i \sim \mathcal{N}(0, \sigma^2 I_d)$ are Gaussian for every *i*.
- Under [\(A3\)](#page-0-1), next result shows that the formulas for ρ and $h(s)$ can be simplified.

- In order to have a more explicit characterization of the tail-index, we will make the following additional assumption Assumption (A3): $a_i \sim \mathcal{N}(0, \sigma^2 I_d)$ are Gaussian for every *i*.
- Under [\(A3\)](#page-0-1), next result shows that the formulas for ρ and $h(s)$ can be simplified.
- Let H be a matrix with the same distribution as H_k , and e_1 be the first basis vector. Define

$$
\tilde{\rho} := \mathbb{E} \log \left\| \left(I - \frac{\eta}{b} H \right) e_1 \right\|
$$
\n
$$
\tilde{h}(s) := \mathbb{E} \left[\left\| \left(I - \frac{\eta}{b} H \right) e_1 \right\|^s \right] \text{ for } \rho < 0
$$
\n(17)

Theorem 3 (Gürbüzbalaban, Şimşekli, and Zhu(2021)

Assume [\(A3\)](#page-0-1) holds. Consider the SGD iterations [\(13\)](#page-37-1). If $\rho < 0$, then (i) there exists a unique positive α such that $h(\alpha) = 1$ and [\(16\)](#page-43-0) holds; (ii) we have $\rho = \tilde{\rho}$ and $h(s) = \tilde{h}(s)$, where $\tilde{\rho}$ and $\tilde{h}(s)$ are defined in $(17).$ $(17).$

Theorem 3 (Gürbüzbalaban, Şimşekli, and Zhu(2021)

Assume [\(A3\)](#page-0-1) holds. Consider the SGD iterations [\(13\)](#page-37-1). If $\rho < 0$, then (i) there exists a unique positive α such that $h(\alpha) = 1$ and [\(16\)](#page-43-0) holds; (ii) we have $\rho = \tilde{\rho}$ and $h(s) = \tilde{h}(s)$, where $\tilde{\rho}$ and $\tilde{h}(s)$ are defined in $(17).$ $(17).$

Theorem 4 (Gürbüzbalaban, Simşekli, and Zhu(2021)

Assume [\(A3\)](#page-0-1) holds. The tail-index α is strictly increasing in batch-size b and strictly decreasing in stepsize η and variance σ^2 provided that $\alpha > 1$. Moreover, the tail-index α is strictly decreasing in dimension d.

Characterization of the tail-index α

Under assumption [\(A3\)](#page-0-1) next we notice the characterization of the tail-index α depending on the choice of the batch-size b, the variance σ^2 , which determines the curvature around the minimum and the stepsize.

Characterization of the tail-index α

- Under assumption [\(A3\)](#page-0-1) next we notice the characterization of the tail-index α depending on the choice of the batch-size b, the variance σ^2 , which determines the curvature around the minimum and the stepsize.
- In particular we show that if the stepsize exceeds an explicit threshold, the stationary distribution will become heavy tailed with an infinite variance.

Proposition 1 (Gürbüzbalaban, Simsekli, and $\text{Zhu}(2021)$)

Assume [\(A3\)](#page-0-1) holds. Let $\eta_{crit} := \frac{2b}{\sigma^2(d+b+1)}$ The following holds:

i. There exists $\eta_{max} > \eta_{crit}$ such that for any $\eta_{crit} < \eta < \eta_{max}$, Theorem 2 holds with tail-index $0 < \alpha < 2$

ii. If $\eta = \eta_{crit}$, Theorem 2 holds with tail-index $\alpha = 2$

iii. If $\eta \in (0, \eta_{crit})$, then Theorem 2 holds with tail-index $\alpha > 2$

• (I) convergence to a limit with a finite variance if $\rho < 0$ and $\alpha > 2$

(I) convergence to a limit with a finite variance if $\rho < 0$ and $\alpha > 2$ \bullet (II) convergence to a heavy-tailed limit with infinite variance if $\rho < 0$ and $\alpha < 2$

- (I) convergence to a limit with a finite variance if $\rho < 0$ and $\alpha > 2$
- (II) convergence to a heavy-tailed limit with infinite variance if $\rho < 0$ and $\alpha < 2$
- (III) $\rho > 0$ when convergence cannot be guaranteed.

- (I) convergence to a limit with a finite variance if $\rho < 0$ and $\alpha > 2$
- (II) convergence to a heavy-tailed limit with infinite variance if $\rho < 0$ and $\alpha < 2$
- (III) $\rho > 0$ when convergence cannot be guaranteed.
- For Gaussian input
	- if $\eta < \eta_{crit}$, by Proposition 1, $\rho < 0$ and $\alpha > 2$, therefore regime (I) applies
	- if $\eta_{crit} < \eta < \eta_{max}$, then $\alpha < 2$ thus regime II applies

Experiment on synthetic data

Model setup:

- $x_0 \sim \mathcal{N}(0, \sigma_x^2 I),$
- $a_i \sim \mathcal{N}(0, \sigma^2 I)$
- $y_i|a_i, x_0 \sim$ $\mathcal{N}\left(a_i^Tx_0, \sigma_y^2\right)$

• where $x_0, a_0 \in \mathbb{R}^d$, $y_i \in \mathbb{R}$ for all $i=1,2,\cdots,n$ and $\sigma, \sigma_x, \sigma_y > 0$

Figure 6: Behavior of α with (a) variying the step size η and batch-size b , (b) d and σ , (c) under RMSProp
vy-Tail Phenomenon in Decentralized SGD November 20, 2023 Rafiq Islam [The Heavy-Tail Phenomenon in Decentralized SGD](#page-0-0) November 20, 2023 23 / 44

Results from a fully connected neural network

(a) MNIST

Figure 7: Results on FCNs. Different markers represent different initialization with the same η, b .

Rafiq Islam [The Heavy-Tail Phenomenon in Decentralized SGD](#page-0-0) November 20, 2023 24 / 44

This present era is the era of big data, artificial intelligence, and machine learning.

- This present era is the era of big data, artificial intelligence, and machine learning.
- There has been an exponential growth in the amount of data collection through various source such as smart phones, tablets, sensors or video cameras are major sources of data generation.

- This present era is the era of big data, artificial intelligence, and machine learning.
- There has been an exponential growth in the amount of data collection through various source such as smart phones, tablets, sensors or video cameras are major sources of data generation.
- Often these devices are connected over a communication network (such as a wireless network or a sensor network) that has a high latency or a limited bandwidth.

- This present era is the era of big data, artificial intelligence, and machine learning.
- There has been an exponential growth in the amount of data collection through various source such as smart phones, tablets, sensors or video cameras are major sources of data generation.
- Often these devices are connected over a communication network (such as a wireless network or a sensor network) that has a high latency or a limited bandwidth.
- Because of communication constraints and privacy constraints, gathering all these data for centralized processing is often impractical or infeasible.

Figure 8: Illustration of the network architectures.

Preliminaries before jump into DE-SGD

Decentralized stochastic optimization problems of the form

$$
\min_{x \in \mathbb{R}^d} f(x) = \sum_{i=1}^N f_i(x); \ f_i(x) = \mathbb{E}_{z \sim \mathcal{D}_i} [\ell(x, z_i)] \tag{18}
$$

where $\ell(x, z_i)$ represents the instantaneous loss at node i based on the predictor x and the data point z_i

Preliminaries before jump into DE-SGD

Decentralized stochastic optimization problems of the form

$$
\min_{x \in \mathbb{R}^d} f(x) = \sum_{i=1}^N f_i(x); \ f_i(x) = \mathbb{E}_{z \sim \mathcal{D}_i} [\ell(x, z_i)] \tag{18}
$$

where $\ell(x, z_i)$ represents the instantaneous loss at node i based on the predictor x and the data point z_i

• We have N computation nodes lying on a connected undirected graph $G = (\mathcal{V}, \mathcal{E})$, where $\mathcal{V} = \{1, 2, \cdots, N\}$ is the set of (vertices) nodes and $\mathcal{E} \subseteq (\mathcal{V} \times \mathcal{V})$ is the set of edges that define the connectivity patterns between the nodes.

Preliminaries before jump into DE-SGD

Decentralized stochastic optimization problems of the form

$$
\min_{x \in \mathbb{R}^d} f(x) = \sum_{i=1}^N f_i(x); \ f_i(x) = \mathbb{E}_{z \sim \mathcal{D}_i} [\ell(x, z_i)] \tag{18}
$$

where $\ell(x, z_i)$ represents the instantaneous loss at node i based on the predictor x and the data point z_i

- We have N computation nodes lying on a connected undirected graph $G = (\mathcal{V}, \mathcal{E})$, where $\mathcal{V} = \{1, 2, \cdots, N\}$ is the set of (vertices) nodes and $\mathcal{E} \subseteq (\mathcal{V} \times \mathcal{V})$ is the set of edges that define the connectivity patterns between the nodes.
- The objective f_i is only available at the node i , and the aim is to train models locally at each agent where only local parameters vectors are shared among the neighbors.

Decentralized SGD

The DE-SGD algorithm consists of a weighted averaging with the local variables $x_i^{(k)}$ $i^{(k)}$ of node *i*'s immediate neighbors $j \in \Omega_i := \{j : (i, j) \in \mathcal{G}\}\$ as well as a stochastic gradient step over the node's component function $f_i(x)$, i.e.,

$$
x_i^{(k)} = \sum_{\ell \in \Omega_i} W_{i\ell} x_{\ell}^{(k-1)} - \eta \tilde{\nabla} f_i \left(x_i^{(k-1)} \right) \tag{19}
$$

Decentralized SGD

The DE-SGD algorithm consists of a weighted averaging with the local variables $x_i^{(k)}$ $i^{(k)}$ of node *i*'s immediate neighbors $j \in \Omega_i := \{j : (i, j) \in \mathcal{G}\}\$ as well as a stochastic gradient step over the node's component function $f_i(x)$, i.e.,

$$
x_i^{(k)} = \sum_{\ell \in \Omega_i} W_{i\ell} x_{\ell}^{(k-1)} - \eta \tilde{\nabla} f_i \left(x_i^{(k-1)} \right) \tag{19}
$$

 $\tilde{\nabla} f_i(x)$ is an estimate of the gradient of the loss $f_i(x)$ at node i based on a batch size b_i , satisfying,

$$
\tilde{\nabla} f_i(x_i^{(k)}) := \frac{1}{b_i} \sum_{j=1}^{b_i} \nabla \ell \left(x_i^{(k)}, z_{i,j}^{(k)} \right) \tag{20}
$$

Decentralized SGD

The DE-SGD algorithm consists of a weighted averaging with the local variables $x_i^{(k)}$ $i^{(k)}$ of node *i*'s immediate neighbors $j \in \Omega_i := \{j : (i, j) \in \mathcal{G}\}\$ as well as a stochastic gradient step over the node's component function $f_i(x)$, i.e.,

$$
x_i^{(k)} = \sum_{\ell \in \Omega_i} W_{i\ell} x_{\ell}^{(k-1)} - \eta \tilde{\nabla} f_i \left(x_i^{(k-1)} \right) \tag{19}
$$

 $\tilde{\nabla} f_i(x)$ is an estimate of the gradient of the loss $f_i(x)$ at node i based on a batch size b_i , satisfying,

$$
\tilde{\nabla} f_i(x_i^{(k)}) := \frac{1}{b_i} \sum_{j=1}^{b_i} \nabla \ell \left(x_i^{(k)}, z_{i,j}^{(k)} \right) \tag{20}
$$

 $W \in \mathbb{R}^{N \times N}$ is a symmetric double stochastic weight matrix, with $W_{ij} = W_{ji} > 0$ if $j \in \Omega_i$, $W_{ij} = W_{ji} = 0$ if $j \notin \Omega_i$ and $i \neq j$, and $W_{ii} = 1 - \sum_{j \neq i} W_{ij} > 0$ for every $1 \leq i \leq N$

DE-SGD as centralized SGD

Following Fallah et al.⁶ we can express the DE-SGD iterations as

$$
x^{(k)} = \mathcal{W}x^{(k-1)} - \eta \tilde{\nabla}F\left(x^{(k-1)}\right)
$$

where, $W := W \otimes I_d$, $F : \mathbb{R}^{Nd} \to \mathbb{R}$ defined as $F(x) := F(x_1, x_2, \cdots, x_N) = \sum_{i=1}^{N} f_i(x_i)$, with

$$
x^{(k)} := \left[\left(x_1^{(k)} \right)^T, \left(x_2^{(k)} \right)^T, \cdots, \left(x_N^{(k)} \right)^T \right]^T \in \mathbb{R}^{Nd}
$$

 6 A. Fallah, M. Gürbüzbalaban, A. Ozdaglar, U. Şimşekli, and L. Zhu. Robust distributed accelerated stochastic gradient methods for multi-agent networks. The Journal of Machine Learning Research, 23(1):9893–9988, 2022.

DE-SGD as centralized SGD

Following Fallah et al.⁶ we can express the DE-SGD iterations as

$$
x^{(k)} = \mathcal{W}x^{(k-1)} - \eta \tilde{\nabla}F\left(x^{(k-1)}\right)
$$

where, $W := W \otimes I_d$, $F : \mathbb{R}^{Nd} \to \mathbb{R}$ defined as $F(x) := F(x_1, x_2, \cdots, x_N) = \sum_{i=1}^{N} f_i(x_i)$, with

$$
x^{(k)} := \left[\left(x_1^{(k)} \right)^T, \left(x_2^{(k)} \right)^T, \cdots, \left(x_N^{(k)} \right)^T \right]^T \in \mathbb{R}^{Nd}
$$

and

$$
\tilde{\nabla}F\left(x^{k}\right) := \left[\left(\tilde{\nabla}f_{1}\left(x_{1}^{(k)}\right)\right)^{T}, \left(\tilde{\nabla}f_{2}\left(x_{2}^{(k)}\right)\right)^{T}, \cdots, \left(\tilde{\nabla}f_{N}\left(x_{N}^{(k)}\right)\right)^{T}\right] \tag{21}
$$

 6 A. Fallah, M. Gürbüzbalaban, A. Ozdaglar, U. Şimşekli, and L. Zhu. Robust distributed accelerated stochastic gradient methods for multi-agent networks. The Journal of Machine Learning Research, 23(1):9893–9988, 2022.

DE-SGD as centralized SGD (cont.)

We can alternatively view DE-SGD as C-SGD iterations

$$
x^{(k)} = x^{(k-1)} - \eta \tilde{\nabla} F_{\mathcal{W}}\left(x^{(k-1)}\right) \tag{22}
$$
DE-SGD as centralized SGD (cont.)

We can alternatively view DE-SGD as C-SGD iterations

$$
x^{(k)} = x^{(k-1)} - \eta \tilde{\nabla} F_{\mathcal{W}}\left(x^{(k-1)}\right) \tag{22}
$$

• On a modified objective F_W defined as

$$
F_{\mathcal{W}}(x) := F(x) + \frac{1}{2\eta} x^T (I_{Nd} - \mathcal{W}) x \tag{23}
$$

with the convention that $\tilde{\nabla} F_{\mathcal{W}}(x) = \tilde{\nabla} F(x) + \frac{1}{\eta} (I_{Nd} - \mathcal{W}) x$

DE-SGD as centralized SGD (cont.)

• Similar to (20) , we can define the stochastic Hessian as

$$
\tilde{\nabla}^2 f_i\left(x_i^{(k)}\right) := \frac{1}{b_i} \sum_{j=1}^{b_i} \nabla^2 \ell\left(x_i^{(k)}, z_{i,j}^{(k)}\right)
$$

with

$$
\tilde{\nabla}^2 F\left(x^{(k)}\right) := \left[\left(\tilde{\nabla}^2 f_1\left(x_1^{(k)}\right)\right)^T, \left(\tilde{\nabla}^2 f_2\left(x_2^{(k)}\right)\right)^T, \cdots, \left(\tilde{\nabla}^2 f_N\left(x_N^{(k)}\right)\right)^T \right] \tag{24}
$$

when f_i 's are twice differentiable for every $i = 1, 2, \dots, N$

• The loss function in [\(18\)](#page-63-0) is a quadratic of the form

 $\ell(x, z_i) = \frac{1}{2} (a_i^T x - y_i)^2$ for every node *i*, where $z_i = (a_i, y_i)$ is the local data at agent i with a_i representing the input feature vector and y_i being the output.

- The loss function in [\(18\)](#page-63-0) is a quadratic of the form $\ell(x, z_i) = \frac{1}{2} (a_i^T x - y_i)^2$ for every node *i*, where $z_i = (a_i, y_i)$ is the local data at agent i with a_i representing the input feature vector and y_i being the output.
- Recall that, each node i has access to b_i samples from data $\left\{z_{i,j}^{(k)}=\left(a_{i,j}^{(k)},y_{i,j}^{(k)}\right)\right\}_{j=1}^{n_i}$ at every iteration k to form a stochastic gradient estimate, [\(20\)](#page-66-0) becomes

$$
\tilde{\nabla} f_i(x_i^{(k)}) := \frac{1}{b_i} \sum_{j=1}^{b_i} \left[a_{i,j}^{(k)} \left(a_{i,j}^{(k)} \right)^T x_i^{(k)} - y_{i,j}^{(k)} a_{i,j}^{(k)} \right]
$$

DE-SGD iteration becomes

$$
x^{k} = M^{(k)}x^{(k-1)} + q^{(k)}, \text{ where } M^{(k)} := \mathcal{W} - \eta H^{(k)} \tag{25}
$$

DE-SGD iteration becomes

$$
x^{k} = M^{(k)}x^{(k-1)} + q^{(k)}, \text{ where } M^{(k)} := \mathcal{W} - \eta H^{(k)} \tag{25}
$$

with

$$
H^{(k)} := \text{blkdiag}\left(\left\{H_i^{(k)}\right\}_{i=1}^N\right); \ \ q^{(k)} := \left[\left(q_1^{(k)}\right)^T, \left(q_2^{(k)}\right)^T, \cdots, \left(q_N^{(k)}\right)^T\right]^T
$$

DE-SGD iteration becomes

$$
x^{k} = M^{(k)}x^{(k-1)} + q^{(k)}, \text{ where } M^{(k)} := \mathcal{W} - \eta H^{(k)} \tag{25}
$$

with

$$
H^{(k)}:=\text{blkdiag}\left(\left\{H_i^{(k)}\right\}_{i=1}^N\right);\ \ q^{(k)}:=\left[\left(q_1^{(k)}\right)^T,\left(q_2^{(k)}\right)^T,\cdots,\left(q_N^{(k)}\right)^T\right]^T
$$

where for $i = 1, 2, \cdots, N$

$$
H_i^{(k)} := \frac{1}{b_i} \sum_{j=1}^{b_i} a_{i,j}^{(k)} \left(a_{i,j}^{(k)} \right)^T; \ q_i^{(k)} := \frac{\eta}{b_i} \sum_{j=1}^{b_i} a_{i,j}^{(k)} y_{i,j}^{(k)} \tag{26}
$$

where $a_{i,j}^{(k)}$ and $y_{i,j}^{(k)}$ are i.i.d over over k random draws from the data with the same distribution as $a_{i,j}$, $y_{i,j}$ that satisfy some assumptions

Assumptions

Assumption (A4): For every i, $a_{i,j}$'s are i.i.d over j following a continuous distribution supported on \mathbb{R}^d with all moments finite. Assumption (A5): For every $i = 1, 2, \cdots, N$, $y_{i,j}$ are i.i.d over j with continuous density whose support is $\mathbb R$ with all the moments finite

We recall the concatenated iterates

$$
x^{(k)} = M^{(k)}x^{(k-1)} + q^{(k)}
$$

where $M^{(k)}$, $q^{(k)}$ are defined by [\(25\)](#page-76-0), [\(26\)](#page-76-1)

Assumptions

Assumption (A4): For every i, $a_{i,j}$'s are i.i.d over j following a continuous distribution supported on \mathbb{R}^d with all moments finite. Assumption (A5): For every $i = 1, 2, \cdots, N$, $y_{i,j}$ are i.i.d over j with continuous density whose support is $\mathbb R$ with all the moments finite

We recall the concatenated iterates

$$
x^{(k)} = M^{(k)}x^{(k-1)} + q^{(k)}
$$

where $M^{(k)}$, $q^{(k)}$ are defined by [\(25\)](#page-76-0), [\(26\)](#page-76-1)

• Let us introduce

$$
h(s) := \lim_{k \to \infty} \left(\mathbb{E} \left\| M^{(k)}, M^{(k-1)}, \cdots, M^{(1)} \right\|^s \right)^{\frac{1}{k}} \tag{27}
$$

which arises in stochastic matrix recursions, where ∥ · ∥ denotes the matrix 2-norm (i.e. largest singular value of a matrix).

Since $\mathbb{E} \left\| M^{(k)} \right\|^s \leq \infty$ for all k and $s > 0$, we have $h(s) < \infty$. We define $\Pi^{(k)} := M^{(k)} M^{(k-1)} \cdots, M^{(1)}$ and

$$
\rho := \lim_{k \to \infty} \frac{1}{2k} \log \left(\text{largest eigenvalue of } \left(\Pi^{(k)} \right)^T \Pi^{(k)} \right) \tag{28}
$$

The latter quantity is called the top Lyapunov exponent.

Theorem 5 (Gürbüzbalaban, Hu, Şimşekli, Yuan, and Zhu.)

Suppose (A4)-(A5) hold. Consider the DE-SGD iterations [\(25\)](#page-76-0). If $\rho < 0$ and $\exists!$ positive $\alpha \ni h(\alpha) = 1$, then [\(25\)](#page-76-0) admits a unique stationary solution x^{∞} and $x^{(k)} \to x^{\infty}$ in distribution, where the distribution of x^{∞} satisfies

$$
\lim_{t \to \infty} t^{\alpha} \mathbb{P}\left(u^T x^{\infty} > t\right) = g_{\alpha}(u)
$$

for any $u \in \mathbb{S}^{Nd-1}$, for some positive and continuous function g_{α} on \mathbb{S}^{Nd-1}

• Theorem 5 provides a formula for the tail-index α . But there is not closed form formula for ρ and $h(s)$

- Theorem 5 provides a formula for the tail-index α . But there is not closed form formula for ρ and $h(s)$
- So we use the following estimates

$$
\rho \le \tilde{\rho} := \mathbb{E} \log ||\mathcal{W} - \eta H||
$$

$$
h(s) \le \tilde{h}(s) := \mathbb{E}[||\mathcal{W} - \eta H||^{s}]
$$
 (29)

where H is a matrix that has the same distribution as $H^{(k)}$ (which does not depend on k).

- Theorem 5 provides a formula for the tail-index α . But there is not closed form formula for ρ and $h(s)$
- So we use the following estimates

$$
\rho \le \tilde{\rho} := \mathbb{E} \log ||\mathcal{W} - \eta H||
$$

$$
h(s) \le \tilde{h}(s) := \mathbb{E}[||\mathcal{W} - \eta H||^{s}]
$$
 (29)

where H is a matrix that has the same distribution as $H^{(k)}$ (which does not depend on k).

Lower bounds on the tail-index α :

If $\hat{\alpha}$ is such that $\hat{h}(\hat{\alpha}) = 1$, then by [\(29\)](#page-82-0), $\hat{\alpha}$ is a lower bound on the tail-index α that satisfies $h(\alpha) = 1$ where h is defined as in [\(27\)](#page-79-0). In other words, we have $\hat{\alpha} \leq \alpha$ and therefore $\hat{\alpha}$ serves as a lower bound on the tail-index.

We start with defining properly what exactly we mean by Disconnected SGD and Centralized SGD iterations.

Disconnected SGD (Dis-SGD)

Disconnected SGD (Dis-SGD) corresponds to the case $W = I$ (where nodes do not share information with other nodes), and for every $i = 1, 2, \dots, N$, the iterates follow the recursion: $x_i^k = x_i^{(k-1)} - \eta \tilde{\nabla} f_i\left(x_i^{(k-1)}\right)$ $\binom{(k-1)}{i}$, where each gradient $\tilde{\nabla} f_i\left(x_i^{(k-1)}\right)$ $\binom{(k-1)}{i}$ is based on b_i samples from node i's dataset. The total number of samples (cumulatively over the nodes) equals $\sum_{i=1}^{N} b_i$.

We start with defining properly what exactly we mean by Disconnected SGD and Centralized SGD iterations.

Disconnected SGD (Dis-SGD)

Disconnected SGD (Dis-SGD) corresponds to the case $W = I$ (where nodes do not share information with other nodes), and for every $i = 1, 2, \dots, N$, the iterates follow the recursion: $x_i^k = x_i^{(k-1)} - \eta \tilde{\nabla} f_i\left(x_i^{(k-1)}\right)$ $\binom{(k-1)}{i}$, where each gradient $\tilde{\nabla} f_i\left(x_i^{(k-1)}\right)$ $\binom{(k-1)}{i}$ is based on b_i samples from node i's dataset. The total number of samples (cumulatively over the nodes) equals $\sum_{i=1}^{N} b_i$.

Centralized SGD (C-SGD)

Centralized SGD (C-SGD) consists of the iterations $x_k = x_k - \eta \nabla f(x_{k-1})$, where we take (number of data points per iteration) batch-size to be $\sum_{i=1}^{N} b_i$ for centralized SGD.

We will first be comparing C-SGD to Dis-SGD and then we will be comparing it to the DE-SGD.

- We will first be comparing C-SGD to Dis-SGD and then we will be comparing it to the DE-SGD.
- To make it easier, we assume that $b_i \equiv b$ and $a_{i,j}$ are i.i.d. over i and j

- We will first be comparing C-SGD to Dis-SGD and then we will be comparing it to the DE-SGD.
- To make it easier, we assume that $b_i \equiv b$ and $a_{i,j}$ are i.i.d. over i and j
- Under the assumptions (A4)-(A5), $x_i^{(k)}$ $i^{(k)}$ are independent and that $\hat{\alpha} = \hat{\alpha}(b)$ is a lower bound of the tail-index of x_i^{∞} which is the unique positive value satisfying $\hat{h}(\hat{\alpha}(b)) = 1$

- We will first be comparing C-SGD to Dis-SGD and then we will be comparing it to the DE-SGD.
- To make it easier, we assume that $b_i \equiv b$ and $a_{i,j}$ are i.i.d. over i and j
- Under the assumptions (A4)-(A5), $x_i^{(k)}$ $i^{(k)}$ are independent and that $\hat{\alpha} = \hat{\alpha}(b)$ is a lower bound of the tail-index of x_i^{∞} which is the unique positive value satisfying $\hat{h}(\hat{\alpha}(b)) = 1$
- Where $\hat{h}(s) = \mathbb{E}[\Vert I \eta H \Vert^{s}],$ where $\hat{\alpha}(b)$ emphasize the dependence on the batch-size b such that for each node i, b data points are chosen.

- We will first be comparing C-SGD to Dis-SGD and then we will be comparing it to the DE-SGD.
- To make it easier, we assume that $b_i \equiv b$ and $a_{i,j}$ are i.i.d. over i and j
- Under the assumptions (A4)-(A5), $x_i^{(k)}$ $i^{(k)}$ are independent and that $\hat{\alpha} = \hat{\alpha}(b)$ is a lower bound of the tail-index of x_i^{∞} which is the unique positive value satisfying $\hat{h}(\hat{\alpha}(b)) = 1$
- Where $\hat{h}(s) = \mathbb{E}[\Vert I \eta H \Vert^{s}],$ where $\hat{\alpha}(b)$ emphasize the dependence on the batch-size b such that for each node i, b data points are chosen.
- We use $\hat{\alpha}(b)$ as a proxy of the tail-index.

- We will first be comparing C-SGD to Dis-SGD and then we will be comparing it to the DE-SGD.
- To make it easier, we assume that $b_i \equiv b$ and $a_{i,j}$ are i.i.d. over i and j
- Under the assumptions (A4)-(A5), $x_i^{(k)}$ $i^{(k)}$ are independent and that $\hat{\alpha} = \hat{\alpha}(b)$ is a lower bound of the tail-index of x_i^{∞} which is the unique positive value satisfying $\hat{h}(\hat{\alpha}(b)) = 1$
- Where $\hat{h}(s) = \mathbb{E}[\Vert I \eta H \Vert^{s}],$ where $\hat{\alpha}(b)$ emphasize the dependence on the batch-size b such that for each node i, b data points are chosen.
- We use $\hat{\alpha}(b)$ as a proxy of the tail-index.
- \bullet In C-SGD, bN data points are chosen at each iteration, and hence the batch-size equals bN

• The corresponding tail-index (proxy) is $\hat{\alpha}(bN)$

- The corresponding tail-index (proxy) is $\hat{\alpha}(bN)$
- We have the following observation by adapting the the monotonicity properties of tail-index shown in the paper by Gürbüzbalaban et al.⁷, Theorem 4.

Proposition 2

The tail-index for disconnected SGD is smaller than that of the centralized SGD. Indeed, their difference gets larger as the network size increases.

⁷Mert Gurbuzbalaban, Umut Simsekli, and Lingjiong Zhu. The heavy-tail phenomenon in sgd. International Conference on Machine Learning, pages 3964–3975. PMLR, 2021.

• We assume $d = 1$, $b_i \equiv 1$ and $\sigma_i = \sigma$

- We assume $d = 1$, $b_i \equiv 1$ and $\sigma_i = \sigma$
- In Proposition 2, we showed that the tail-index for Dis-SGD is smaller than that of the C-SGD

- We assume $d = 1$, $b_i \equiv 1$ and $\sigma_i = \sigma$
- In Proposition 2, we showed that the tail-index for Dis-SGD is smaller than that of the C-SGD
- For DE-SGD, chosen mixing matrix $W = I_N \delta L$ where $\delta > 0$ is small enough so that the spectral radius of W is not larger than 1, and L is a graph Laplacian.

- We assume $d = 1$, $b_i \equiv 1$ and $\sigma_i = \sigma$
- In Proposition 2, we showed that the tail-index for Dis-SGD is smaller than that of the C-SGD
- For DE-SGD, chosen mixing matrix $W = I_N \delta L$ where $\delta > 0$ is small enough so that the spectral radius of W is not larger than 1, and L is a graph Laplacian.
- Under some mild assumption we can show when δ is small, the tail-index for the DE-SGD is smaller than that of the Dis-SGD given the stepsize η or network size N is large.

Corollary

Under some mild assumptions the tail-index $\hat{\alpha}$ of the decentralized SGD is smaller than that of the centralized SGD provided that the stepsize η or network size N is large and δ is small.

Deep learning experiment

• FCN on MNIST: we assume there are $N = 8$ nodes in the network and batch size is set to $b = 5$

- Trained for $10K$ iterations and step size $\eta \approx 10^{-4}$ to 7.5×10^{-2}
- Figure 9: Tail-index α for different setting on MNIST and CIFAR10.

• ResNet-20 on CIFAR10: with $N = 24$

Summary

Gradient noise in SGD is not guaranteed to be Gaussian and in fact, they admit heavy-tail. These features motivate us to analyze SGD as an SDE driven by α -stable Lévy motion.

Summary

- Gradient noise in SGD is not guaranteed to be Gaussian and in fact, they admit heavy-tail. These features motivate us to analyze SGD as an SDE driven by α −stable Lévy motion.
- Next, if the SGD is modeled through heavy-tailed SDE driven by Lévy motion, then the generalization and heaviness of the tail-index have a direct interplay: the heavier tail indicates better generalization.

Summary

- Gradient noise in SGD is not guaranteed to be Gaussian and in fact, they admit heavy-tail. These features motivate us to analyze SGD as an SDE driven by α −stable Lévy motion.
- Next, if the SGD is modeled through heavy-tailed SDE driven by Lévy motion, then the generalization and heaviness of the tail-index have a direct interplay: the heavier tail indicates better generalization.
- Since existing works on SGD about the heavy-tails do not apply in the decentralized settings, therefore, the heaviness of the tail and network structure or architecture have some relationship which are: there are two regimes of parameters (step size and network size), where DE-SGD can have lighter or heavier tails then the disconnected SGD depending on regime.

Future research directions

We can investigate the tail-index analysis for the DE-SGD. We want to study the metastability analysis for DE-SGD.

Future research directions

- We can investigate the tail-index analysis for the DE-SGD. We want to study the metastability analysis for DE-SGD.
- We can study the generalization performance for DE-SGD through the lens of algorithmic stability.

Future research directions

- We can investigate the tail-index analysis for the DE-SGD. We want to study the metastability analysis for DE-SGD.
- We can study the generalization performance for DE-SGD through the lens of algorithmic stability.
- We can also study the momentum based DE-SGD.

[Conclusion](#page-106-0)

Thank you! Questions?

Rafiq Islam [The Heavy-Tail Phenomenon in Decentralized SGD](#page-0-0) November 20, 2023 44 / 44